• Title/Summary/Keyword: magnetorheological dampers

Search Result 72, Processing Time 0.03 seconds

Study on the space frame structures incorporated with magnetorheological dampers

  • Xu, Fei-Hong;Xu, Zhao-Dong;Zhang, Xiang-Cheng
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.279-288
    • /
    • 2017
  • Magnetorheological damper has received significant attention in recent years due to the reason that it can offer adaptability of active control devices without requiring the associated large power sources. In this paper, performance tests on a MR damper are carried out under different currents, excitation amplitudes and frequencies, the damping characteristics and energy dissipation capacity of the MR damper are analyzed. Elasto-plastic dynamic analysis on a space frame structure incorporated with MR dampers is conducted, and numerical analysis results show that MR dampers can significantly mitigate the structural vibration responses. Finally, the genetic algorithm with the improved binary crossover and mutation technique is adopted to optimize the arrangement of MR dampers. Numerical results show that dynamic responses of the optimal controlled structure are mitigated more effectively.

Vibration Control of Vehicle Suspension Featuring Magnetorheological Dampers: Road Test Evaluation (MR 댐퍼를 적용한 자동차 현가장치의 진동제어 : 실차시험 평가)

  • Sung, Kum-Gil;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.980-985
    • /
    • 2008
  • This paper presents vehicle road test of a semi-active suspension system equipped with continuously controllable magnetorheological (MR) dampers. As a first step, front and rear MR dampers are designed and manufactured based on the optimized damping force levels and mechanical dimensions required for a commercial middle-sized passenger vehicle. After experimentally evaluating dynamic characteristics of the MR dampers, the test vehicle is prepared for road test by integrating current suppliers, real-time data acquisition system and numerous sensors such as accelerometer and gyroscope. Subsequently, the manufactured four MR dampers (two for front parts and two for rear parts) are incorporated with the test vehicle and a skyhook control algorithm is formulated and realized in the data acquisition system. In order to emphasize practical aspect of the proposed MR suspension system, road tests are undertaken on proving grounds: bump and paved roads. The control responses are evaluated in both time and frequency domains by activating the MR dampers.

  • PDF

Vibration Control of Vehicle Suspension Featuring Magnetorheological Dampers : Road Test Evaluation (MR댐퍼를 적용한 자동차 현가장치의 진동제어 : 실차시험 평가)

  • Sung, Kum-Gil;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.235-242
    • /
    • 2009
  • This paper presents vehicle road test of a semi-active suspension system equipped with continuously controllable magnetorheological(MR) dampers. As a first step, front and rear MR dampers are designed and manufactured based on the optimized damping force levels and mechanical dimensions required for a commercial middle-sized passenger vehicle. After experimentally evaluating dynamic characteristics of the MR dampers, the test vehicle is prepared for road test by integrating current suppliers, real-time data acquisition system and numerous sensors such as accelerometer and gyroscope. Subsequently, the manufactured four MR dampers(two for front parts and two for rear parts) are incorporated with the test vehicle and a skyhook control algorithm is formulated and realized in the data acquisition system. In order to emphasize practical aspect of the proposed MR suspension system, road tests are undertaken on proving grounds: bump and paved roads. The control responses are evaluated in both time and frequency domains by activating the MR dampers.

Constrained rotary MR damper design and its application (자기 유변 유체를 이용한 각도 제한 회전 감쇠기 설계 및 응용)

  • 김상화;박영진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.191-194
    • /
    • 1997
  • Passive, semi-active and active dampers have been used to dissipate energy in mechanical systems. Semi-active dampers have higher performance than passive dampers and require lower power to operate than active dampers. Its damping characteristics can be changed appropriately for varying conditions. In this paper, we developed a semi-active damper based on Magnetorheological(MR) fluid. MR fluid has a variable damping characteristics proportional for the magnetic field intensity. It has several advantages such as high strength, low viscosity, robustness in impurities and wide temperature range of operational stability. We designed a constrained rotary MR damper base on valve mode which can dissipate more energy per unit volume. The system with Bingham characteristics is obtained and proved by the experiment.

  • PDF

Nonlinear seismic damage control of steel frame-steel plate shear wall structures using MR dampers

  • Xu, Longhe;Li, Zhongxian;Lv, Yang
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.937-953
    • /
    • 2014
  • A semi-active control platform comprising the mechanical model of magnetorheological (MR) dampers, the bang-bang control law and damage material models is developed, and the simulation method of steel plate shear wall (SPSW) and optimization method for capacity design of MR dampers are proposed. A 15-story steel frame-SPSW structure is analyzed to evaluate the seismic performance of nonlinear semi-active controlled structures with optimal designed MR dampers, results indicate that the control platform and simulation method are stable and fast, and the damage accumulation effects of uncontrolled structure are largely reduced, and the seismic performance of controlled structures has been improved.

An Optimal Design of Valve-Mode Magnetorheological fluid dampers for Structural Control (구조물 진동제어용 밸브 모드형 자기유변댐퍼의 최적설계 방법)

  • Moon, Seok-Jun;Huh, Young-Chul;Jung, Hyung-Jo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.393-400
    • /
    • 2006
  • One of the most promising semi-active devices proposed for structural control is magnetorheological fluid (MR) dampers. While many researches are making too much of application to structural control, few of papers are considering how to design the MR dampers having good performance. In this paper, the sub-optimal design procedure for MR dampers is presented. This paper shows that an MR damper having the capacity of about 5,000 N is designed according to proposed procedure, as an exmple.

  • PDF

Development of a full-scale magnetorheological damper model for open-loop cable vibration control

  • Zhang, Ru;Ni, Yi-Qing;Duan, Yuanfeng;Ko, Jan-Ming
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.553-564
    • /
    • 2019
  • Modeling of magnetorheological (MR) dampers for cable vibration control to facilitate the design of even more effective and economical systems is still a challenging task. In this study, a parameter-adaptive three-element model is first established for a full-scale MR damper based on laboratory tests. The parameters of the model are represented by a set of empirical formulae in terms of displacement amplitude, voltage input, and excitation frequency. The model is then incorporated into the governing equation of cable-damper system for investigation of open-loop vibration control of stay cables in a cable-stayed bridge. The concept of optimal voltage/current input achieving the maximum damping for the system is put forward and verified. Multi-mode suboptimal and Single-mode optimal open-loop control method is then developed. Important conclusions are drawn on application issues and unique characteristics of open-loop cable vibration control using MR dampers.

Control Strategy for Seismic Responses of Cable-Stayed Bridges Using MR Fluid Dampers (MR 유체 감쇠기률 이용한 사장교의 지진응답 제어 기법)

  • Jung, Hyung_-Jo;Moon, Yeong-Jong;Ko, Man-Gi;Lee, In-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.149-156
    • /
    • 2002
  • This paper examines the ASCE first generation benchmark problem for a seismically excited cable-stayed bridge, and proposes a new semi-active control strategy focusing on inclusion of effects of control- structure interaction. In this study, magnetorheological (MR) fluid dampers, which belong to the class of controllable fluid dampers, are proposed as the supplemental damping devices, and a clipped-optimal control algorithm, shown to perform well in previous studies involving MR fluid dampers, is employed. The dynamic model for MR fluid dampers is considered as a modified Bouc-Wen model, which is obtained from data based on experimental results for large-scale dampers. Numerical results show that the performance of the proposed semi-active control strategy using MR fluid dampers is quite effective.

  • PDF

Seismic response control of buildings with force saturation constraints

  • Ubertini, Filippo;Materazzi, A. Luigi
    • Smart Structures and Systems
    • /
    • v.12 no.2
    • /
    • pp.157-179
    • /
    • 2013
  • We present an approach, based on the state dependent Riccati equation, for designing non-collocated seismic response control strategies for buildings accounting for physical constraints, with particular attention to force saturation. We consider both cases of active control using general actuators and semi-active control using magnetorheological dampers. The formulation includes multi control devices, acceleration feedback and time delay compensation. In the active case, the proposed approach is a generalization of the classic linear quadratic regulator, while, in the semi-active case, it represents a novel generalization of the well-established modified clipped optimal approach. As discussed in the paper, the main advantage of the proposed approach with respect to existing strategies is that it allows to naturally handle a broad class of non-linearities as well as different types of control constraints, not limited to force saturation but also including, for instance, displacement limitations. Numerical results on a typical building benchmark problem demonstrate that these additional features are achieved with essentially the same control effectiveness of existing saturation control strategies.

Modified Sliding Mode Control of Structures Using MR Dampers (MR 감쇠기를 이용한 구조물의 변형된 슬라이딩 모드 제어)

  • 민경원;정진욱
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.3
    • /
    • pp.243-250
    • /
    • 2002
  • Semi-active control devices have received significant attention in recent Years because they offer the adaptability of active-control devices without requiring the associated large power sources. Magnetorheological(MR) dampers are semiactive control devices that use MR fluids to produce controllable dampers. This paper applies sliding mode control method using target variation rate of Lyapunov function for the control of structures by use of MR dampers. The three-story building model under earthquake excitation is analyzed by installing a MR damper in the first-story. The performance of semi-active controllers designed by clipped-optimal algorithm and modified sliding mode control algorithm is compared to the performance of passive-type MR dampers. The results indicate that semi-active controllers achieve a greater reduction of responses than passive-type system and especially the controller by modified sliding mode control method shows a good applicability in the view of response control and control force.