• Title/Summary/Keyword: marine environment monitoring

Search Result 448, Processing Time 0.034 seconds

Marine Environment Monitoring and Analysis System Model (해양환경 모니터링 및 분석 시스템의 모델)

  • Park, Sun;Kim, Chul Won;Lee, Seong Ro
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.10
    • /
    • pp.2113-2120
    • /
    • 2012
  • The study of automatic monitoring and analysis of marine environment in Korea is not enough. Recently, the marine monitoring technology is actively being studied since the sea is a rich repository of natural resources that is taken notice in the world. In particular, the marine environment data should be collected continuously in order to understand and analyze the marine environment, however the marine environment monitoring is limited in many area yet. The prediction of marine disaster by automatic collecting marine environment data and analyzing the collected data can contribute to minimized the damages with respect to marine pollution of oil spill and fisheries damage by red tide blooms and marine environment upsets. In this paper, we proposed the marine environment monitoring and analysis system model. The proposed system automatically collects the marine environment information for monitoring the marine environment intelligently. Also it predicts the marine disaster by analyzing the collected ocean data.

Marine Environment Monitoring System based Open Source (오픈소스 기반 해양환경 모니터링 시스템)

  • Park, Sun;Cha, ByungRae;Kim, Jongwon
    • Smart Media Journal
    • /
    • v.6 no.3
    • /
    • pp.75-82
    • /
    • 2017
  • Recently, the marine monitoring technology is actively being studied since the sea is a rich repository of natural resources that is taken notice in the world. In particular, the marine environment data should be collected continuously in order to understand and analyze the marine environment, however the study of automatic monitoring of marine environment in Korea is not enough. In this paper, we proposed the marine environment monitoring system based on open source. The proposed system can be designed as a scale out system using Hadoop based time series database which it can easily process the increasing collection data by a scale out computer resources. It can also be used to analyze marine data by visualizing collected data.

Marine Disasters Prediction System Model Using Marine Environment Monitoring (해양환경 모니터링을 이용한 해양재해 예측 시스템 모델)

  • Park, Sun;Lee, Seong Ro
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.3
    • /
    • pp.263-270
    • /
    • 2013
  • Recently, the prediction and analysis technology of marine environment are actively being studied since the ocean resources in the world is taken notice. The prediction of marine disaster by automatic collecting marine environment data and analyzing the collected data can contribute to minimized the damages with respect to marine pollution of oil spill and fisheries damage by red tide blooms and marine environment upsets. However the studies of the marine environment monitoring and analysis system are limited in South Korea. In this paper, we study the marine disasters prediction system model to analyze collection marine information of out sea and near sea. This paper proposes the models for the marine disasters prediction system as communication system model, a marine environment data monitoring system model, prediction and analyzing system model, and situations propagation system model. The red tide prediction model and summarizing and analyzing model is proposed for prediction and analyzing system model.

A Study on the Appropriateness as Organic Matters Indicator and the Distribution of Chemical Oxygen Demand and Total Organic Carbon in Masan Bay, Korea (마산만 해수 중 화학적산소요구량과 총유기탄소 분포 특성 및 유기물 지표로서의 적절성 검토)

  • PARK, MI-OK;LEE, YONG-WOO;CHO, SEONG-AH;KIM, HYE-MI;PARK, JUN-KUN;KIM, SUNG-GIL;KIM, SEONG-SOO;LEE, SUK MO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.2
    • /
    • pp.82-95
    • /
    • 2021
  • We investigated the temporal and spatial distribution characteristics of chemical oxygen demand (COD) and total organic carbon (TOC) in all 13 locations of Masan Bay from February to November in 2015. The COD and TOC contents were high during the June-August period when the pollution load increased. In particular, the concentrations of COD and TOC were about twice as high in the surface water as in the bottom water. In spatial distribution, the COD and TOC concentrations at the inner bay were about twice as high as those of the outer bay in Masan Bay. As a result of estimating the oxidation efficiency of COD from the surface layer of Masan Bay in 2015 based on the theoretical oxygen demand (TOD), it was at the level of about 23%. Due to the low oxidation efficiency of COD, there is a risk that the organic matter in Masan Bay will be somewhat underestimated. Therefore, for quantitative analysis of organic matter, COD and TOC analyses need to be combined.

The Marine Environmental Monitoring System in the Yellow Sea (황해의 해양환경 모니터링 시스템)

  • Heo, Seung;Park, Jong-Soo;An, Kyoung-Ho;Lee, Yoon;Choi, Ok-In;Lim, Dong-Hyun;Hwang, Woon-Ki;Lee, Seung-Min;Kim, Pyoung-Joong;Bang, Hyun-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.3
    • /
    • pp.307-312
    • /
    • 2010
  • The West Sea Fisheries Research Institute of National Fisheries Research and Development Institute which is in charge of research on marine environment, fisheries resources and aquaculture carries out various monitoring projects with an aim of marine ecosystem conservation. The monitoring projects include costal oceanographic observation, serial oceanographic observation, fishing ground monitoring, national marine environmental monitoring, harmful algal bloom monitoring, Korea-China joint monitoring on the Yellow Sea and jellyfish monitoring. The monitoring produces basic data on fishing ground locations of main fishery species to improve fishery productivity. The data are also used to estimate variations in fisheries resources caused by climate change and to set up the policy for creating economic value from fishery, marine environmental conservation and marine leisure activities and conserving/controlling the marine environment for the sustainable production in the fishing ground.

A Study on an Integrated Monitoring and Modeling System for Marine Environment of Coastal Waters (연안해역 환경의 종합 감시 및 모델 체계에 관한 연구)

  • 김광수
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.8 no.1
    • /
    • pp.149-159
    • /
    • 2002
  • Various numerical models that have been developed for marine environments and applied to coastal waters in USA were introduced briefly. Inter alia, with regard to an integrated monitoring and modeling system, the main features and outline of system, the system architecture for data management and representation system, and the incorporation of internet based technology were described. An example of application of an integrated system to coastal waters was also presented. The prospective research works to improve the capabilities and to advance the functionality of an integrated monitoring, modeling and management system were suggested to be the instrumentations for various monitoring parameters, the new development and/or advancement of various numerical models, the relevant internet based technologies. etc..

  • PDF

The History and Development of the Marine Environment QA/QC (Quality Assurance/Quality Control) Management System (해양환경 정도관리제도 운영에 대한 고찰)

  • PARK, MI-OK;PARK, JUN-KUN;KIM, SEONG-GIL;KIM, SEONG-SOO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.3
    • /
    • pp.185-200
    • /
    • 2021
  • The Marine Environment QA/QC management system has been operated since 2010 to secure the reliability of data and improve the analysis capabilities of measurement and analysis institutions. From 2010 to 2020, the cumulative number of measurement and analysis institutions participated in the QA/QC management system was 266. And the number of certificates issued by the ministry of oceans and fisheries is 182. A total of 32 reference materials for proficiency testing and interlaboratory comparisons have been developed. They were first developed focusing on items (Nutrients, COD) commonly analyzed in marine environmental measuring network, marine pollution impact surveys, sea area utilization impact assessment, deepsea water surveys, and information network on fishing ground environments. In addition, it is time to expand the filed of the QA/QC management system, such as seawater temperature, salinity, PCBs and PAHs in sediments, which are mainly analyzed in most monitoring programs. On-site assessment has been conducted for 162 laboratories according to ISO/IEC 17025 to evaluate their conformity of the quality management system and deficiency. In terms of management and technology requirements, about 4.2% of organizations showed insufficient division of duties among employees 8.7% of them revealed the lack of employee training. By test item, about 6.3% of organizations showed the lack of standard substance management and the state of the cleaning glassware was pointed out in about 5.4% of them. The QA/QC management system should be continuously supplemented by identifying the causes of nonconformities and area for improvement.

A Study on the Inflow and Seasonal Characteristics of Foreign Marine Debris in the Coastal Area of the West Sea (서해안 일대 외국기인 해양쓰레기의 유입과 계절적 특성 연구)

  • Jang, Seon-Woong;Park, Jae-Moon;Chung, Yong-Hyun;Kim, Dae-Hyun;Yoon, Hong-Jo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.2
    • /
    • pp.89-100
    • /
    • 2012
  • The aim of this study knows to occurrence characteristics and monthly transition of foreign marine debris by changing in the marine environment for the national marine debris monitoring areas in the west coastal area. The Jeju Island (5,112) had the highest number for foreign marine debris flowed in the coast. Many areas in the next were surveyed by Hajo Island (1,967), Imja Island (507). Plastic bottles were the most common type to 2,925 piece of the whole collection. Then, the monthly occurrence amount was concentrated in July, September. At this time, analysis results of the marine environment are as follows: The sea surface wind of southerly or southeasterly were predominated. In addition, the sea surface circulations were dominated by inflow of seawater southward along the China Coast and northward from the East China Sea.

Distribution of Heavy Metal Concentrations in Surface Sediments of the eastern Yellow Sea (황해 동부해역 표층퇴적물의 중금속 농도 분포)

  • SUN, CHUL-IN;PARK, GEON-WOO;PARK, HYEON-SIL;PARK, JUN KUN;KIM, SEONG GIL;CHOI, MAN SIK
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.23 no.4
    • /
    • pp.179-191
    • /
    • 2018
  • In order to determine the distribution characteristics of the heavy metals in surface sediments of the eastern Yellow Sea, heavy metal concentrations (Cu, Pb, Zn, Cd, Cr, Mn, As, Ni, Co, Li, Fe and Al) together with grain size and total organic carbon (TOC), were analyzed. The concentrations of all heavy metals, with the exception of Pb, Mn and As in some stations, were relatively high in the central area of the Yellow Sea and tended to decrease toward the Korean coast. A significant relationship between grain size and concentrations of heavy metals suggested that they were mostly controlled by quartz dilution effect. However, at some stations, Pb, Mn and As exhibited different distribution patterns. For Pb, the differences were caused by petrogenetic influences (feldspar) in coarse-grained sediments. In the case of Mn, biogenetic influences ($CaCO_3$) affected distribution patterns. As was distributed differently because of the existence of a heavy mineral (pyrite). A comparison with previous data (collected in 2000) shows that the heavy metal concentration in the eastern Yellow Sea has not increased over the past fifteen years. The sedimentary environment of dumping sites in the Yellow Sea has not been significantly improved during this period. The results of the pollution assessment revealed that the concentrations of heavy metals in the study area were lower than lower criteria (TEL, MSQ-1) in Korean and Chinese sediment quality guidelines. The enrichment factor (EF), geo-accumulation index ($I_{geo}$) and ecological risk index (ERI) of Cu, Pb, Zn and Cr were higher in the central area of the Yellow Sea.