• 제목/요약/키워드: maskless process

검색결과 49건 처리시간 0.027초

Maskless 방식을 이용한 PCB 생산시스템의 진동 해석 (VIBRATION ANALYSIS OF PCB MANUFACTURING SYSTEM USING MASKLESS EXPOSURE METHOD)

  • 장원혁;이재문;조명우;김종수;이철희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.421-426
    • /
    • 2009
  • This paper presents vibration analysis of maskless exposure module in Printed Circuit Board (PCB) manufacturing system. In order to complete exposure process in PCB, masking type module has been widely used in electronics industries. However, masking process confronts some limitations of application due to higher production cost for masking as well as lower printing resolution. Therefore, maskless exposure module is started to be in the spotlight for flexible production system to meet the needs of fabrication in variable patterns at low cost. Since maskless exposure process adopts direct patterning to PCB, vibration problems become more critical compared to conventional masking type process. Moreover, movements of exposure engine as well as stage generate vibration sources in the system. Thus, it is imperative to analyze the vibration characteristics for the maskless exposure module to improve the quality and accuracy of PCB. In this study, vibration analysis using the Finite Element Analysis is conducted to identify the critical structural parts deteriorating vibration performance. Also, Experimental investigations are conducted by single/dual encoder measurement process under the operating module speed. Measurement points of vibration are selected by three places, which are base of stage, exposure engine and top of stage, to check the effect of vibration from the exposure engine. Comparisons between analysis results and experimental measurement are conducted to confirm the accuracy of analysis results including the developed FE model. Finally, this studies show feasibility of optimal design using the developed FE analysis model.

  • PDF

Maskless 방식을 이용한 PCB생산시스템의 진동 해석 (Vibration Analysis of PCB Manufacturing System Using Maskless Exposure Method)

  • 장원혁;이재문;조명우;김종수;이철희
    • 한국소음진동공학회논문집
    • /
    • 제19권12호
    • /
    • pp.1322-1328
    • /
    • 2009
  • This paper presents vibration analysis of maskless exposure module in printed circuit board(PCB) manufacturing system. In order to complete exposure process in PCB, masking type module has been widely used in electronics industries. However, masking process confronts some limitations of application due to higher production cost for masking as well as lower printing resolution. Therefore, maskless exposure module is started to be in the spotlight for flexible production system to meet the needs of fabrication in variable patterns at low cost. Since maskless exposure process adopts direct patterning to PCB, vibration problems become more critical compared to conventional masking type process. Moreover, movements of exposure engine as well as stage generate vibration sources in the system. Thus, it is imperative to analyze the vibration characteristics for the maskless exposure module to improve the quality and accuracy of PCB. In this study, vibration analysis using the finite element analysis is conducted to identify the critical structural parts deteriorating vibration performance. Also, Experimental investigations are conducted by single/dual encoder measurement process under the operating module speed. Measurement points of vibration are selected by three places, which are base of stage, exposure engine and top of stage, to check the effect of vibration from the exposure engine. Comparisons between analysis results and experimental measurement are conducted to confirm the accuracy of analysis results including the developed FE model. Finally, this studies show feasibility of optimal design using the developed FE analysis model.

Maskless Screen Printing Process using Solder Bump Maker (SBM) for Low-cost, Fine-pitch Solder-on-Pad (SoP) Technology

  • Choi, Kwang-Seong;Lee, Haksun;Bae, Hyun-Cheol;Eom, Yong-Sung
    • 마이크로전자및패키징학회지
    • /
    • 제20권4호
    • /
    • pp.65-68
    • /
    • 2013
  • A novel bumping process using solder bump maker (SBM) is developed for fine-pitch flip chip bonding. It features maskless screen printing process. A selective solder bumping mechanism without the mask is based on the material design of SBM. Maskless screen printing process can implement easily a fine-pitch, low-cost, and lead-free solder-on-pad (SoP) technology. Its another advantage is ternary or quaternary lead-free SoP can be formed easily. The process includes two main steps: one is the thermally activated aggregation of solder powder on the metal pads on a substrate and the other is the reflow of the deposited powder on the pads. Only a small quantity of solder powder adjacent to the pads can join the first step, so a quite uniform SoP array on the substrate can be easily obtained regardless of the pad configurations. Through this process, an SoP array on an organic substrate with a pitch of 130 ${\mu}m$ is, successfully, formed.

Maskless 노광공정을 위한 LDI(Laser Direct Imaging) 시스템 개발 및 단일 레이저 빔 에너지 분포 분석 (Development of a LDI System for the Maskless Exposure Process and Energy Intensity Analysis of Single Laser Beam)

  • 이수진;김종수;신봉철;김동우;조명우
    • 한국생산제조학회지
    • /
    • 제19권6호
    • /
    • pp.834-840
    • /
    • 2010
  • Photo lithography process is very important technology to fabricate highly integrated micro patterns with high precision for semiconductor and display industries. Up to now, mask type lithography process has been generally used for this purpose; however, it is not efficient for small quantity and/or frequently changing products. Therefore, in order to obtain higher productivity and lower manufacturing cost, the mask type lithography process should be replaced. In this study, a maskless lithography system using the DMD(Digital Micromirror Device) is developed, and the exposure condition and optical properties are analyzed and simulated for a single beam case. From the proposed experimental conditions, required exposure experiments were preformed, and the results were investigated. As a results, 10${\mu}m$ spots can be generated at optimal focal length.

Maskless용 스크린 제판 기술 연구(I) (A Study on the Maskless Plate Making Technology for Screen Printing(I))

  • 이미영;박경진;남수용
    • 한국인쇄학회지
    • /
    • 제26권1호
    • /
    • pp.73-85
    • /
    • 2008
  • We have manufactured a photoresist which has excellent dispersity and good applying property due to 330cps of viscosity for environment-friendly and economical maskless screen plate making. And the photoresist applied on the screen stretched was exposed without mask by beam projector with CRT light source. Then it was developed by air spray with $1.7kgf/cm^2$ of injection pressure. The pencil hardness and solvent resistance of curing photoresist film were worse than those of conventional photoresist film and the maximum resolution of line image formed by maskless screen plate making was 0.5 mm since the exposure system for maskless plate making has weak light intensity and the diffusion of light. But we could obtain maskless screen plate which has sharp edges of line image and confirm a possibility of dry development process by air spray method.

  • PDF

Maskless Lithography system을 이용한 TSP 검사 용 micro bump 제작에 관한 연구. (A study of fabrication micro bump for TSP testing using maskless lithography system.)

  • 김기범;한봉석;양지경;한유진;강동성;이인철
    • 한국산학기술학회논문지
    • /
    • 제18권5호
    • /
    • pp.674-680
    • /
    • 2017
  • 본 논문은 현재 개인 휴대기기 및 대형 디스플레이 장비의 제어에서 폭넓게 사용되고 있는 터치스크린 패널 (TSP; Touch Screen Panel)의 정상 작동 유무를 확인하기 위한 micro bump 제작 기술에 관한 연구이다. 터치스크린 패널은 감압식, 정전식 등의 여러 가지 방식이 있으나 지금은 편리성에 의하여 정전식 방식이 주도하고 있다. 정전식의 경우 해당하는 좌표의 접촉에 따라 전기적 신호가 변화하게 되고, 이를 통하여 접촉 위치를 확인할 수 있으며 따라서 접촉 위치에 따른 전기 특성 검사가 필수적이다. 검사공정에서 TSP의 모델이 변경됨에 따라 새로운 micro bump를 제작이 및 검사 프로그램의 수정이 필수적이다. 본 논문에서는 새로운 micro bump 제작 시 mask를 사용하지 않아 보다 경제적이며 변화에 대응이 유연한 maskless lithography 시스템을 이용하여 micro bump 제작 가능성에 대하여 확인하였다. 이를 위하여 제작되는 bump의 pitch에 따른 전기장 간섭 시뮬레이션을 진행하였으며, maskless lithogrphy 공정을 적용하기 위한 패턴 이미지를 생성하였다. 이후 MEMS 기술에 해당하는 PR(Photo Resist) 패터닝 공정에서 노광(Lithography) 공정 및 현상(Developing) 공정을 통하여 PR 마스크를 제작한 후 electro-plating 공정을 통하여 micro bump를 제작하였다.

Interconnection Technology Based on InSn Solder for Flexible Display Applications

  • Choi, Kwang-Seong;Lee, Haksun;Bae, Hyun-Cheol;Eom, Yong-Sung;Lee, Jin Ho
    • ETRI Journal
    • /
    • 제37권2호
    • /
    • pp.387-394
    • /
    • 2015
  • A novel interconnection technology based on a 52InSn solder was developed for flexible display applications. The display industry is currently trying to develop a flexible display, and one of the crucial technologies for the implementation of a flexible display is to reduce the bonding process temperature to less than $150^{\circ}C$. InSn solder interconnection technology is proposed herein to reduce the electrical contact resistance and concurrently achieve a process temperature of less than $150^{\circ}C$. A solder bump maker (SBM) and fluxing underfill were developed for these purposes. SBM is a novel bumping material, and it is a mixture of a resin system and InSn solder powder. A maskless screen printing process was also developed using an SBM to reduce the cost of the bumping process. Fluxing underfill plays the role of a flux and an underfill concurrently to simplify the bonding process compared to a conventional flip-chip bonding using a capillary underfill material. Using an SBM and fluxing underfill, a $20{\mu}m$ pitch InSn solder SoP array on a glass substrate was successfully formed using a maskless screen printing process, and two glass substrates were bonded at $130^{\circ}C$.

HV-SoP Technology for Maskless Fine-Pitch Bumping Process

  • Son, Jihye;Eom, Yong-Sung;Choi, Kwang-Seong;Lee, Haksun;Bae, Hyun-Cheol;Lee, Jin-Ho
    • ETRI Journal
    • /
    • 제37권3호
    • /
    • pp.523-532
    • /
    • 2015
  • Recently, we have witnessed the gradual miniaturization of electronic devices. In miniaturized devices, flip-chip bonding has become a necessity over other bonding methods. For the electrical connections in miniaturized devices, fine-pitch solder bumping has been widely studied. In this study, high-volume solder-on-pad (HV-SoP) technology was developed using a novel maskless printing method. For the new SoP process, we used a special material called a solder bump maker (SBM). Using an SBM, which consists of resin and solder powder, uniform bumps can easily be made without a mask. To optimize the height of solder bumps, various conditions such as the mask design, oxygen concentration, and processing method are controlled. In this study, a double printing method, which is a modification of a general single printing method, is suggested. The average, maximum, and minimum obtained heights of solder bumps are $28.3{\mu}m$, $31.7{\mu}m$, and $26.3{\mu}m$, respectively. It is expected that the HV-SoP process will reduce the costs for solder bumping and will be used for electrical interconnections in fine-pitch flip-chip bonding.