• Title/Summary/Keyword: maximum access delay time

Search Result 34, Processing Time 0.03 seconds

Improved Maximum Access Delay Time, Noise Variance, and Power Delay Profile Estimations for OFDM Systems

  • Wang, Hanho;Lim, Sungmook;Ko, Kyunbyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.4099-4113
    • /
    • 2022
  • In this paper, we propose improved maximum access delay time, noise variance, and power delay profile (PDP) estimation schemes for orthogonal frequency division multiplexing (OFDM) system in multipath fading channels. To this end, we adopt the approximate maximum likelihood (ML) estimation strategy. For the first step, the log-likelihood function (LLF) of the received OFDM symbols is derived by utilizing only the cyclic redundancy induced by cyclic prefix (CP) without additional information. Then, the set of the initial path powers is sub-optimally obtained to maximize the derived LLF. In the second step, we can select a subset of the initial path power set, i.e. the maximum access delay time, so as to maximize the modified LLF. Through numerical simulations, the benefit of the proposed method is verified by comparison with the existing methods in terms of normalized mean square error, erroneous detection, and good detection probabilities.

Effect Analysis of Timing Offsets for Asynchronous MC-CDMA Uplink Systems (비동기 MC-CDMA 상향 링크 시스템에서의 시간 옵셋 영향 분석)

  • Ko, Kyun-Byoung;Woo, Choong-Chae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.8
    • /
    • pp.1-8
    • /
    • 2010
  • This paper models a symbol timing offset (STO) with respect to the guard period and the maximum access delay time for asynchronous multicarrier code division multiple access (MC-CDMA) uplink systems over frequency-selective multipath fading channels. Analytical derivation shows that STO causes desired signal power degradation and generates self-interferences. This effect of the STO on the average bit error rate (BER) and the effective signal-to-noise ratio (SNR) is evaluated. The approximated BER and the SNR loss caused by STO are then obtained as closed-form expressions. The tightness between the analytical result and the simulated one is verified for the different STOs and SNRs. Furthermore, the derived analytical results are verified via Monte Carlo simulations.

Performance Analysis of Opportunistic Spectrum Access Protocol for Multi-Channel Cognitive Radio Networks

  • Kim, Kyung Jae;Kwak, Kyung Sup;Choi, Bong Dae
    • Journal of Communications and Networks
    • /
    • v.15 no.1
    • /
    • pp.77-86
    • /
    • 2013
  • Cognitive radio (CR) has emerged as one of effective methods to enhance the utilization of existing radio spectrum. Main principle of CR is that secondary users (SUs) are allowed to use the spectrum unused by primary users (PUs) without interfering PU's transmissions. In this paper, PUs operate on a slot-by-slot basis and SUs try to exploit the slots unused by PUs. We propose OSA protocols in the single channel and we propose an opportunistic spectrum access (OSA) protocols in the multi-channel cognitive radio networks with one control channel and several licensed channels where a slot is divided into contention phase and transmission phase. A slot is divided into reporting phase, contention phase and transmission phase. The reporting phase plays a role of finding idle channels unused by PUs and the contention phase plays a role of selecting a SU who will send packets in the data transmission phase. One SU is selected by carrier sense multiple access / collision avoidance (CSMA/CA) with request to send / clear to send (RTS/CTS) mechanism on control channel and the SU is allowed to occupy all remaining part of all idle channels during the current slot. For mathematical analysis, first we deal with the single-channel case and we model the proposed OSA media access control (MAC) protocol by three-dimensional discrete time Markov chain (DTMC) whose one-step transition probability matrix has a special structure so as to apply the censored Markov chain method to obtain the steady state distribution.We obtain the throughput and the distribution of access delay. Next we deal with the multi-channel case and obtain the throughput and the distribution of access delay by using results of single-channel case. In numerical results, our mathematical analysis is verified by simulations and we give numerical results on throughput and access delay of the proposed MAC protocol. Finally, we find the maximum allowable number of SUs satisfying the requirements on throughput and access delay.

Bandwidth Allocation and Performance Analysis of MAC Protocol for Ethernet PON (Ethernet PON의 MAC프로토콜의 대역폭 할당 및 성능 분석)

  • 엄종훈;장용석;김성호
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.7
    • /
    • pp.261-272
    • /
    • 2003
  • An Ethernet PON(Passive Optical Network) is an economical and efficient access network that has received significant research attention in recent years. A MAC(Media Access Control) protocol of PON , the next generation access network, is based on TDMA(Time Division Multiple Access) basically and can classify this protocol into a fixed length slot assignment method suitable for leased line supporting QoS(Quality of Service) and a variable length slot assignment method suitable for LAN/MAN with the best effort. For analyzing the performance of these protocols, we design an Ethernet PON model using OPNET tool. To establish the maximum efficiency of a network, we verify a MAC protocol and determine the optimal number of ONUs(Optical Network Unit) that can be accepted by one OLT(Optical Line Terminal) and propose the suitable buffer size of ONU based on analyzing the end-to-end Ethernet delay, queuing delay, throughput, and utilization.

Random Access Method of the Wibro System

  • Lee, Kang-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.1A
    • /
    • pp.49-57
    • /
    • 2011
  • Random access method for Wibro system is proposed using the Bayesian Technique, which can estimate the number of bandwidth request messages in a frame only based on the number of successful slots. The performance measures such as the maximum average throughput, the mean delay time and the collision ratio are investigated to evaluate the performance of the proposed method. The proposed method shows better performance than the binary exponential backoff algorithm used currently.

An Efficient Downlink Scheduling Scheme Using Prediction of Channel State in an OFDMA-TDD System (OFDMA-TDD 시스템에서 채널상태 예측을 이용한 효율적인 하향링크 스케줄링 기법)

  • Kim Se-Jin;Won Jeong-Jae;Lee Hyong-Woo;Cho Choong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.5A
    • /
    • pp.451-458
    • /
    • 2006
  • In this paper, we propose a novel scheduling algorithm for downlink transmission which utilizes scarce wireless resource efficiently in an Orthogonal Frequency Division Multiple Access/Time Division Duplex system. Scheduling schemes which exploit channel information between a Base Station and terminals have been proposed recently for improved performance. Time series analysis is used to estimate the channel state of mobile terminals. The predicted information is then used for prioritized scheduling of downlink transmissions for improved throughput, delay and jitter performance. Through simulation, we show that the total throughput and mean delay of the proposed scheduling algorithm are improved compared with those of the Proportional Fairness and Maximum Carrier to Interference Ratio schemes.

Adaptive Packet Scheduling Scheme to Support Real-time Traffic in WLAN Mesh Networks

  • Zhu, Rongb;Qin, Yingying;Lai, Chin-Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.9
    • /
    • pp.1492-1512
    • /
    • 2011
  • Due to multiple hops, mobility and time-varying channel, supporting delay sensitive real-time traffic in wireless local area network-based (WLAN) mesh networks is a challenging task. In particular for real-time traffic subject to medium access control (MAC) layer control overhead, such as preamble, carrier sense waiting time and the random backoff period, the performance of real-time flows will be degraded greatly. In order to support real-time traffic, an efficient adaptive packet scheduling (APS) scheme is proposed, which aims to improve the system performance by guaranteeing inter-class, intra-class service differentiation and adaptively adjusting the packet length. APS classifies incoming packets by the IEEE 802.11e access class and then queued into a suitable buffer queue. APS employs strict priority service discipline for resource allocation among different service classes to achieve inter-class fairness. By estimating the received signal to interference plus noise ratio (SINR) per bit and current link condition, APS is able to calculate the optimized packet length with bi-dimensional markov MAC model to improve system performance. To achieve the fairness of intra-class, APS also takes maximum tolerable packet delay, transmission requests, and average allocation transmission into consideration to allocate transmission opportunity to the corresponding traffic. Detailed simulation results and comparison with IEEE 802.11e enhanced distributed channel access (EDCA) scheme show that the proposed APS scheme is able to effectively provide inter-class and intra-class differentiate services and improve QoS for real-time traffic in terms of throughput, end-to-end delay, packet loss rate and fairness.

A Medium Access Control Protocol for rt- VBR Traffic in Wireless ATM Networks

  • Lim, In-Taek
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.1
    • /
    • pp.29-34
    • /
    • 2007
  • This paper proposes a MAC protocol for real-time VBR (rt-VBR) services in wireless ATM networks. The proposed protocol is characterized by a contention-based mechanism of the reservation request, a contention-free polling scheme for transferring the dynamic parameters, and a priority scheme of the slot allocation. The design objective of the proposed protocol is to guarantee the real-time constraint of rt-VBR traffic. The scheduling algorithm uses a priority scheme based on the maximum cell transfer delay parameter. The wireless terminal establishes an rt-VBR connection to the base station with a contention-based scheme. The base station scheduler allocates a dynamic parameter minislot to the wireless terminal for transferring the residual lifetime and the number of requesting slots as the dynamic parameters. Based on the received dynamic parameters, the scheduler allocates the uplink slots to the wireless terminal with the most stringent delay requirement. The simulation results show that the proposed protocol can guarantee the delay constraint of rt-VBR services along with its cell loss rate significantly reduced.

A Realization of the Synchronization Module between the Up-Link and the Down-Link for the WiBro System (WiBro 시스템에서 상향링크와 하향링크 간 시간 동기 장치 구현)

  • Park Hyong-Rock;Kim Jae-Hyung;Hong Een-Kee
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.4 no.1
    • /
    • pp.7-13
    • /
    • 2005
  • In this paper, we propose the time synchronization module on fiber optic repeater to use optic line delay for obtaining time synchronization between up-link and down-link, in the 2.3 GHz WiBro network using TDD/OFDM (Time Division Duplex/Orthogonal Frequency Division Multiplexing) Generally, when we use fiber optic repeater to remove the shade area, it occurs transmission delay which is caused by optic transmission between RAS (Radio Access Station) and fiber optic repeater and inner delay of fiber optic repeater. Because the WiBro system is adopting a TOO method and there exists the difference of switching time which is caused by these delay between up-link and down-link, it occurs ISI (Inter Symbol Interference), ICI (Inter Carrier Interference). These interference results in the reduction of the coverage. And the inconsistency between Up-Link and Down-Link switching time maybe gives rise to the interruption of communication. In order to prevent these cases, we propose synchronization module using analog optic line delay as the one of synchronizing up-link and down-link. And we propose the consideration factor for the designing time synchronization module and the feature of optic line of analog method. The measurement result of optic line time synchronization module of structure proposed is as follows, the delay error of $0.5{\mu}g$ and the insertion loss value below maximum 4.5dB in range of $0{\sim}40{\mu}s$. These results fully meet the specification of WiBro System.

  • PDF

Symbol Time Tracking Algorithm for WAVE Systems (WAVE 시스템에서 심볼 시간추적 알고리듬)

  • Hong, Dae-Ki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.2
    • /
    • pp.397-406
    • /
    • 2009
  • A Wireless Access for Vehicular Environment (WAVE) system based on Orthogonal frequency Division Multiplexing (OFDM) is made for vehicle to vehicle wireless communications. The physical layer standard of the WAVE system is very similar to that of the IEEE802.1la wireless local area network (WLAN). Therefore, the performance of the WAVE system is degraded by continual timing delay in the WAVE multipath fading channels after starting initial timing synchronization. In this paper, the tracking algorithm that synchronizes symbol timing is proposed to continually compensate additional timing delay. Computer simulation of the proposed algorithm is performed in the worst communication environments that apply to maximum timing delay. Computer simulation shows that the proposed algorithm can improve the system performance in various channel conditions.