• Title/Summary/Keyword: maximum load

Search Result 3,915, Processing Time 0.029 seconds

Load Shedding Schemes of Under Frequency Relay to Improve Reliability in Power Systems (전력계통 신뢰도 강화를 위한 저주파계전기의 적정 부하차단 방안)

  • Kim, Kyu-Ho;Song, Kyung-Bin;Kim, Il-Dong;Yang, Jeong-Jae;Cho, Beom-Seob
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1214-1220
    • /
    • 2010
  • This paper proposes an efficient under frequency relay load shedding scheme for the korea power system which is more than two times than the system size and its capacity of the power system 10 years ago. The proposed method is keeping the power system stability and supports for the operating system during critical situations such as big disturbances and unstable in supply and demand. In order to determine the number of load shedding steps, the load to be shed per step, and frequency level, it is necessary to investigate and analyze maximum losses of generation due to the biggest contingency, maximum system overload, maximum keeping frequency, maximum load to be shed, and recovery frequency. The proposed method is applied to Off-peak load(25,400MW) and Peak load(62,290MW) of Korea Electric Power Corporation to demonstrate its effectiveness.

The Effect of Changes in Polymerization Conditions of Orthodontic Acrylic Resin on Maximum Load (Orthodontic Acrylic Resin의 중합조건 변화가 최대하중에 미치는 영향)

  • Lee, Gyu Sun
    • Journal of Technologic Dentistry
    • /
    • v.35 no.2
    • /
    • pp.127-136
    • /
    • 2013
  • Purpose: In order to find out the impact of changes in polymerization conditions of orthodontic acrylic resin on maximum load. Methods: While maintaining mixing ratio 3:1 of polymer and monomer in spray-on way in the production condition of polymerization temperature $25^{\circ}C$ or $37^{\circ}C$ for 10 minutes or 30 minutes of polymerization time by pressure $3kfg/cm^2$ or $6kfg/cm^2$ in the lab maintaining $25^{\circ}C$ of room temperature, the change in maximum load rise rate was tested by producing 5 acrylic resin specimens for orthodontics per group to meet the standards of $25mm{\times}2mm{\times}2mm$ and using INSTRON with the 3rd bar 2mm in diameter and parallel support bending device of $15{\pm}0.1mm$ as test equipment showing 30.00mm/min of crosshead speed, $50{\pm}16$ N/min of load ratio in the laboratory of $24^{\circ}C$ room temperature and as a result, the following results were obtained. Results: 1. When increasing pressure from $3kfg/cm^2$ to $6kfg/cm^2$, maximum load was lowered by -4.285%. 2. When increasing polymerization time from 10 minutes to 30 minutes, maximum load rose by 3.848%. 3. When increasing polymerization temperature from $27^{\circ}C$ to $37^{\circ}C$, maximum load rose by 5.854%. Conclusion: Considering the above test results that polymerization time and polymerization temperature when polymerizing acrylic resin for orthodontics according to changes in working conditions had an impact on the rate of rise of maximum load values but the rate of rise was lowered when increasing pressure from $3kfg/cm^2$ to $6kfg/cm^2$, we came to a conclusion that high pressure more than necessary does not affect the rate of rise of maximum load.

Crack and Deformation Behaviors of Steel Fiber Reinforced Concrete Slab Model Specimens Using Domestic Steel Fiber (국내 강섬유를 사용한 강섬유보강 콘크리트 슬래브 모델의 균열 및 변형특성)

  • 박승범;홍석주;이봉춘;조춘근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.319-324
    • /
    • 1999
  • This study is to investigate the properties on the load-deflection and fracture behaviors of the steel fiber reinforced concrete(SFRC) slab model specimens, Steel fibers of indent, crimp, and end hook shape were considered to reinforce the matrix under various mixing conditions and proportions. Initial cracking load, maximum load, and energy absorption capacity(load carrying capacity) of SFRC panel specimen increased with increase of steel fiber contents. And the plain concrete slab was fractured abruptly after maximum load but SRFC slabs were fractured smoothly by steel fibers in concrete matrix operated as cracking resistance force after maximum load. Indent, crimp and end hook shape steel fibers were effective in reinforcing the matrices but end hook type fiber were superior to indent and crimp type fibers.

  • PDF

A study on case analysis for loading capacity standard establishment of bi-directional pile load test (BD PLT) (양방향말뚝재하시험의 재하용량 기준 설정을 위한 사례분석 연구)

  • Choi, Yong-Kyu;Seo, Jeong-Hae;Kim, Sang-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.377-384
    • /
    • 2008
  • In the bi-directional pile load test (BD PLT) for pile load test of Mega foundation, loading capacity specification were not specified exactly. Therefore there are so many confusions and variations of maximum 2 times in loading capacity are come out. In this study, specifications of bi-directional pile load test (BD PLT) were considered. Based on cases of the bi-directional pile load test performed in domestic areas, maximum equivalent test load, test load increasing ratio and sufficiency ratio of design load were analyzed. It can be known that the loading capacity specification of bi-directional pile load test must be defined as 1-directional test load that is established as more than 2 times of design load.

  • PDF

Analysis of Weather Data for Design of Biological Production Facility (생물생산시설 설계용 기상자료 분석)

  • Lee, Suk-Gun;Lee, Jong-Won;Lee, Hyun-Woo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.156-163
    • /
    • 2005
  • This study was attempted to provide some fundamental data for safety structrural design of biological production facility. Wind load and snow load, acting on agricultural structures is working more sensitive than any other load. Therefore, wind speed and snow depth according to return periods for design load estimation were calculated by frequency analysis using the weather data(maximum instantaneous wind speed, maximum wind speed, maximum depth of snow cover and fall) of 68 regions in Korea. Equations for estimating maximum instantaneous wind speed with maximum wind speed were developed for all, inland and seaside regions. The results were about the same as the current eqution in general. Design wind speed and snow depth according to return periods were calculated and Local design wind load and snow load depending on return periods were presented together with iso-wind speed and iso-snow depth maps. The calculated design snow depth by maximum depth of snow cover were higher than design snow depth by maximum depth of snow fall. Considering wind speed and snow depth, protected cultivation is very difficult in Ullungdo, Gangwon seaside and contiguity inland regions, and strong structural design is needed in the west-south seaside against wind speed, and structure design of biological production facility in these regions need special consideration.

  • PDF

THE THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS OF THE PARTIALLY EDENTULOUS IMPLANT PROSTHESIS WITH VARYING TYPES OF NON-RIGID CONNECTION (부분 무치악 임플랜트 보철 수복시 자연치와의 비고정성 연결형태에 따른 3차원 유한요소법적 연구)

  • Lee, Seon-A;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.1
    • /
    • pp.101-124
    • /
    • 1996
  • In this study, we designed the finite element models of mandible with varying their connecting types between the prosthesis on implant fixture and 2nd premolar, which were free-standing case(Mf), precision attachment case(Mp), semiprecision attachment case(Ms) and telescopic case(Mt). The basic model of the designed finite element models, which contained a canine and the 1st & 2nd premolar, was implanted in the edentulous site of the 1st & 2nd molar by two implant fixtures. We applied the load in all models by two ways. A vertical load of 200N was applied at each central fossa of 2nd premolar and 1st implant. A tilting load of 20N with inclination of $45^{\circ}$ to lingual side was applied to buccal cusp tips of each 2nd premolar and 1st implant. And then we analyzed three-dimensional finite element models, making a comparative study of principal stress and displacement in four cases respectively. Three-dimensional finite element analysis was performed for the stress distribution and the displacement using commercial software(IDEAS program) for SUN-SPARC workstation. The results were as follows : 1 Under vertical load or tilting load, maximum displacement appeared at the 2nd premolar. Semiprecision case showed the largest maximum displacement, and maximum displacement reduced in the order of precision attachment, free-standing and telescopic case. 2. Under vertical load. the pattern of displacement of the 1st implant appeared mesio-inclined because of the 2nd implant splinted together. But displacement pattern of the 2nd premolar varied according to their connection type with prosthesis. The 2nd premolar showed a little mesio-inclined vertical displacement in case of free-standing and disto-inclined vertical displacement due to attachment in case of precision and semiprecision attachment. In telescopic case, the largest mesio-inclined vertical displacement has been shown, so, the 1st premolar leaned mesial side. 3. Under tilting load, The pattern of displacement was similar in all four cases which appeared displaced to lingual side. But, the maximum displacement of 2nd premolar appeared larger than that of the first implant. Therefore, there was large discrepancy in displacement between natural tooth and implant during tilting load. 4. Under vertical load, the maximum compressive stress appeared at the 1st implant's neck. Semiprecision attachment case showed the largest maximum compressive stress, and the maximum compressive stress reduced in the order of precision attachment, telescopic and free-standing case. 5 Under vertical load, the maximum tensile stress appeared at the 2nd implant's distal neck. Semiprecision attachment case showed the largest maximum tensile stress, and the maximum tensile stress reduced in the order of precision attachment, telescopic and free-standing case. 6. Under vertical load or tilting load, principal stress appeared little between natural tooth & implant in free-standing case, but large principal stress was distributed at upper crown and distal contact site of the 2nd premolar in telescopic case. Principal stress appeared large at keyway & around keyway of distal contact site of the 2nd premolar in precision and semiprecision attachment case, appearing more broad and homogeneous in precision attachment case than in semiprecision attachment case.

  • PDF

Effects of Biodiesel Fuel on Characteristics of Specific Fuel Consumption and Exhaust Emissions in DJ Diesel Engine;Using Rape Oil (직접분사식 디젤기관에서 연료소비율 및 배기배출물 특성에 미치는 바이오디젤유의 영향;유채유를 중심으로)

  • Lim, J.K.;Choe, S.Y.;Cho, S.G.
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.11a
    • /
    • pp.133-137
    • /
    • 2007
  • An experimental study is conducted to evaluate and compare the use of BiodieseDI Fuel supplements at blend ratio of 10/90(BDF10) and 20/80(BDF20), in four stroke, direct injection diesel engine located at the authors' laboratory. especially this Biodiesel is produced from Rape oil at the authors' laboratory. The tests are conducted using each of the above fuel blends, in the engine working at a speed of 1800rpm and at a various loads. In each test, specific fuel consumption, exhaust emissions such as nitrogen oxides(NOx), carbon monoxide(CO) and Soot are measured. The results of investigation at various operating conditions are as follows (1) Specific fuel consumption is increased average 1.52%, maximum 1.84% at load 25% in case of BDF10, and average 1.98%, maximum 2.80% at load 25% in case of BDF20. (2) CO emission is decreased average 5.14%, maximum 6.09% at load 0% in case of BDF10, and average 7.75%, maximum 9.13% at load 0% in case of BDF 20. (3) NOx emission is increased average 2.97%, maximum 3.74% at load 0% in case of BDF10, and average 3.84%, maximum 4.67% at load 0% in case of BDF20. (4) Soot emission is decreased average 9.36%, maximum 10.85% at load 75% in case of BDF10, and average 11.99%, maximum 13.95% at load 75% in case of BDF20.

  • PDF

Wind load combinations and extreme pressure distributions on low-rise buildings

  • Tamura, Yukio;Kikuchi, Hirotoshi;Hibi, Kazuki
    • Wind and Structures
    • /
    • v.3 no.4
    • /
    • pp.279-289
    • /
    • 2000
  • The main purpose of this paper is to demonstrate the necessity of considering wind load combinations even for low-rise buildings. It first discusses the overall quasi-static wind load effects and their combinations to be considered in structural design of low-rise buildings. It was found that the maximum torsional moment closely correlates with the maximum along-wind base shear. It was also found that the instantaneous pressure distribution causing the maximum along-wind base shear was quite similar to that causing the maximum torsional moment, and that this asymmetric pressure pattern simultaneously accompanies considerable across-wind and torsional components. Secondly, the actual wind pressure distributions causing maximum quasi-static internal forces in the structural frames are conditionally sampled and their typical pressure patterns are presented.

A study on the Limitation presumption of Maximum Weightlifting load of Snatch three dimention motion analysis (3D 인상 동작에서 최대중량부하의 극한계치 추정에 관한 연구)

  • 이창민;서국웅;김용재
    • Proceedings of the ESK Conference
    • /
    • 1997.10a
    • /
    • pp.168-176
    • /
    • 1997
  • The purpose of this study is to know load for each human body's knee joint to endure load efficiently, when weight lifter pulls suitable bar in the each weight lifting level. To use the difference of load and correlation between men and women, the conclusion of this stduy is to find parameters to conduct maximum limitation of maximum load to search maximum limitation. The moment of each joint in the lower area was to have a much difference between group of the turunk in the first step. It decreased rapidly until decent and greatly pulled in the second step. Neuromusclar moment increased suddenly in the decrease phase. This phenomenon resulted from shock-absorbing function to sbsorb a load from bar.

  • PDF

Evaluation of Plastic Collapse Bending Load of Elbows with Thinning Area of Various Shapes (여러 형상의 감육부를 가진 엘보우의 소성붕괴 굽힘 하중의 평가)

  • Shin, Kyu-In;Lee, Sung-Ho;Yoon, Kee-Bong
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.3
    • /
    • pp.17-24
    • /
    • 2008
  • Elbows with various shapes of local wall thinning were numerically analyzed by finite element method to get load-displacement curves and the maximum loads. Results were compared with the experimental data obtained by another study. Elastic-plastic analysis were carried out under the combined loading conditions of internal pressure and in-plane bending loads. Two types of bending loads were considered such as elbow opening mode and elbow closing mode. Also, two different wall thinning geometries were modeled. Wall thinning area located extrados or intrados of elbow inner surface was considered. Longitudinal and circumferential lengths of the thinning area and the thinned thickness were varied for analysis. The results showed that the maximum load of the wall-thinned elbow decreased with increasing of the circumferential thinning length and the thinned thickness in both of extrados and intrados thinning locations in both loading types. The maximum load obtained by the analysis were in good agreement with the experimentally measured maximum load with the same wall thinning type and dimensions. This supports accuracy of the analysis results obtained in this study.