• Title/Summary/Keyword: maximum power control

Search Result 1,424, Processing Time 0.034 seconds

A Study on Programmable Logic-based Smart Peak Power Control System (프로그램 로직 기반의 스마트 최대 전력 관리 시스템에 관한 연구)

  • Lee, Woo-Cheol;Kwon, Sung-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.2
    • /
    • pp.92-99
    • /
    • 2014
  • The paper is related to smart maximum power system based on program logic. Especially, this system compares the total demand power with the target power by using the signal from the digital kilo watt meter. Based on the power information by the maximum power control equipment the consumed future power is anticipated. In addition, through consumed future power the controllable target power is set, and it applies on the maximum power control equipment. User or manager would control the load efficiently through the simple programming which could control load based on the control sequence and relay. To begin with the conventional maximum power control algorithm is surveyed, and the smart maximum power control system based on program logic is used, and the new algorithm from full load to proportion shut down is proposed by using PLC program. the validity of the proposed control scheme is investigated by both simulation results.

Performance of PI Controller for Maximum Power Extraction of a Grid-Connected Wind Energy Conversion System (계통연계 풍력발전 시스템의 최대출력 제어를 위한 PI 제어기의 성능 분석)

  • No, Gyeong-Su;Ryu, Haeng-Su
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.8
    • /
    • pp.391-397
    • /
    • 2002
  • This paper presents a modeling and simulation of a PI controller for maximum power extraction of a grid-connected wind energy conversion system with a link of a rectifier and an inverter. It discusses the maximum power control algorithm fnr a wind turbine and proposes, in a graphical form, the relationships of wind turbine output, rotor speed, power coefficient, tip-speed ratio with wind speed when the wind turbine is operated under the maximum power control. The control objective is to always extract maximum power from wind and transfer the power to the utility by controlling both the Pitch angle of the wind turbine blades and the inverter firing angle. Pitch control method is mechanically complicated, but the control performance is better than that of the stall regulation method. The simulation results performed on MATLAB will show the variation of generator's rotor angle and rotor speed, pitch angle, and generator output.

Maximum Power Analysis Simulator Development & Lighting Installation Control Simulation (최대전력 분석시뮬레이터 개발 및 조명설비 제어 시뮬레이션)

  • Chang, Hong-Soon;Han, Young-Sub;Soe, Sang-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.3
    • /
    • pp.95-99
    • /
    • 2013
  • The maximum power analysis simulator took advantage of the facilities and power consumption reduction simulator test scenario development and testing of improvement in the scenario. As a maximum demand power controller, Maximum power analysis simulator performs control and disperasion of maximum demand power by calculating base power, load forecast, and present power which are based on signal of watt-hour meter to keep the electricity under the target. In addition, various algorithms to select appropriate control methode on each of the light installations through the peak demand power is configured to management. The simulation shows the success of control power for the specified target controlled by five sequential lighting installations.

Simulation for Pitch Angle Control Strategies of a Grid-Connected Wind Turbine System on MATLAB/Simulink

  • Ro, Kyoung-Soo;Choi, Joon-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.1
    • /
    • pp.91-97
    • /
    • 2007
  • This paper presents a pitch angle controller of a grid-connected wind turbine system for extracting maximum power from wind and implements a modeling and simulation of the wind turbine system on MATLAB/Simulink. It discusses the maximum power control algorithm for the wind turbine and presents, in a graphical form, the relationship of wind turbine output, rotor speed, and power coefficient with wind speed when the wind turbine is operated under the maximum power control algorithm. The objective of pitch angle control is to extract maximum power from wind and is achieved by regulating the blade pitch angle during above-rated wind speeds in order to bypass excessive energy in the wind. Case studies demonstrate that the pitch angle control is carried out to achieve maximum power extraction during above-rated wind speeds and effectiveness of the proposed controller would be satisfactory.

A Fuzzy Logic Controller Design for Maximum Power Extraction of Variable Speed Wind Energy Conversion System (가변 풍력발전 시스템의 최대출력 제어를 위한 Fuzzy 제어기 설계)

  • Kim Jae-gon;Huh Uk-youl;Kim Byung-yoon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.11
    • /
    • pp.753-759
    • /
    • 2004
  • This paper presents a modeling and simulation of a fuzzy controller for maximum power extraction of a grid-connected wind energy conversion system with a link of a rectifier and an inverter. It discusses the maximum power control algorithm for a wind turbine and proposes, in a graphical form, the relationships of wind turbine output, rotor speed, power coefficient, tip-speed ratio with wind speed when the wind turbine is operated under the maximum power control. The control objective is to always extract maximum power from wind and transfer the power to the utility by controlling both the pitch angle of the wind turbine blades and the inverter firing angle. Pitch control method is mechanically complicated, but the control performance is better than that of the stall regulation method. The simulation results performed on MATLAB will show the variation of generator's rotor angle and rotor speed, pitch angle, and generator output.

Maximum Output Power Control of Wind Generation System Using Fuzzy Control (퍼지제어를 이용한 풍력발전 시스템의 최대출력 제어)

  • Abo-Khalil, Ahmed. G.;Kim, Young-Sin;Lee, Dong-Choon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.10
    • /
    • pp.497-504
    • /
    • 2005
  • For maximum output power, wind turbines are usually controlled at the speed which is determined by the optimal tip-speed ratio. This method requires information of wind speed and the power conversion coefficient which is varied by the pitch angle control. In this paper, a new maximum output power control algorithm using fuzzy logic control is proposed, which doesn't need this information. Instead, fuzzy controllers use information of the generator speed and the output power. By fuzzy rules, the fuzzy controller produces a new generator reference speed which gives the maximum output power of the generator for variable wind speeds. The proposed algorithm has been implemented for the 3[kW] cage-type induction generator system at laboratory, of which results verified the effectiveness of the algorithm.

A Variable Step Size Incremental Conductance MPPT of a Photovoltaic System Using DC-DC Converter with Direct Control Scheme

  • Cho, Jae-Hoon;Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.9
    • /
    • pp.74-82
    • /
    • 2013
  • This paper presents a novel maximum power point tracking for a photovoltaic power (PV) system with a direct control plan. Maximum power point tracking (MPPT) must usually be integrated with photovoltaic (PV) power systems so that the photovoltaic arrays are able to deliver maximum available power. The maximum available power is tracked using specialized algorithms such as Perturb and Observe (P&O) and incremental Conductance (indCond) methods. The proposed method has the direct control of the MPPT algorithm to change the duty cycle of a dc-dc converter. The main difference of the proposed system to existing MPPT systems includes elimination of the proportional-integral control loop and investigation of the effect of simplifying the control circuit. The proposed method thus has not only faster dynamic performance but also high tracking accuracy. Without a conventional controller, this method can control the dc-dc converter. A simulation model and the direct control of MPPT algorithm for the PV power system are developed by Matlab/Simulink, SimPowerSystems and Matlab/Stateflow.

MPPT Control of Photovoltaic by FNN (FNN에 의한 태양광 발전의 MPPT 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1968-1975
    • /
    • 2009
  • The paper proposes a novel control algorithm for tracking maximum power of PV generation system.. The maximum power of PV array is determinated by a insolation and temperature. Prior considered the term in PV generation system is how maximum power point(MPP) is accurately tracked.. The paper proposes a fuzzy neural network(FNN) control algorithm so as to accurately track those maximum power points. The proposed control algorithm comprises the antecedence part of fuzzy rule and clustering method, multi-layer neural network in the consequent part. FNN has the advantages which are depicted both high performance and robustness in fuzzy control and high adaptive control in neural network.. Specially, it can show the outstanding control performance for parameter variations appling to non-linear character of PV array. In this paper, the tracking speed and the accuracy prove the validity through comparing a proposed algorithm with a conventional one.

A study of Maximum-Power Control Simulation for PMA-SynRM (PMA-SynRM의 최대출력제어를 위한 시뮬레이션 연구)

  • Pyun, Kyung-Bum;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.103-105
    • /
    • 2009
  • This paper presents the maximum-power control simulation for PMA-SynRM. For maximum power, the maximum torque / current control method is conducted in constant-torque range and flux-weakening control method is conducted in constant-power range. For considering the nonlinear characteristics of inductance, machine constant is determined by FEM. Finally, experiment is conducted to calculate the efficiency.

  • PDF

A Study on Smart Peak Power Control System (스마트 최대 전력 관리 시스템 알고리듬 연구)

  • Lee, Woo cheol
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.227-228
    • /
    • 2013
  • The paper is related to smart maximum power system based on program logic. Especially, this system compares the total demand power with the target power by using the signal from the digital kilo watt meter. Based on the power information by the maximum power control equipment the consumed future power is anticipated. In addition, through consumed future power the controllable target power is set, and it applies on the maximum power control equipment. User or manager would control the load efficiently through the simple programming which could control load based on the control sequence and relay. So this system could control load more efficient and stable. Also the conventional load control circuit is not needed. Therefore, it is possible to improve the simple system configuration, which is resulted in cost effective and time saving. So this system is anticipated on time and coast.

  • PDF