• Title/Summary/Keyword: mean curvature flow

Search Result 60, Processing Time 0.027 seconds

Throughflow Analysis of Axial Flow Turbines - Comparison of Multi-streamline and Mean Line Methods - (축류터빈의 관통유동해석 - 다유선해석과 평균반경해석의 비교분석 -)

  • Kim, Tong Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.8
    • /
    • pp.1173-1182
    • /
    • 1998
  • A throughflow analysis program for axial flow turbines is constructed, which can handle not only the two-dimensional multi-streamline (streamline curvature) method but also the one-dimensional mean line method. Calculations are performed for single stage and multi-stage axial flowturbines. For a wide operating range, the performance and flow field calculated by the present streamline curvature method are close enough to the test data. It is also revealed for the single stage turbine that the present analysis leads to far better correspondence with the experiment than other researchers" throughflow analyses. A special focus is put on the comparison of the results between the streamline curvature analysis and the mean line analysis. It is found that the mean line analysis can not predict the performance for highly off-designed conditions as accurately as the streamline curvature method, which shows the importance of considering the spanwise variation of loss and flow.

MONOTONICITY OF THE FIRST EIGENVALUE OF THE LAPLACE AND THE p-LAPLACE OPERATORS UNDER A FORCED MEAN CURVATURE FLOW

  • Mao, Jing
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1435-1458
    • /
    • 2018
  • In this paper, we would like to give an answer to Problem 1 below issued firstly in [17]. In fact, by imposing some conditions on the mean curvature of the initial hypersurface and the coefficient function of the forcing term of a forced mean curvature flow considered here, we can obtain that the first eigenvalues of the Laplace and the p-Laplace operators are monotonic under this flow. Surprisingly, during this process, we get an interesting byproduct, that is, without any complicate constraint, we can give lower bounds for the first nonzero closed eigenvalue of the Laplacian provided additionally the second fundamental form of the initial hypersurface satisfies a pinching condition.

ANCIENT SOLUTIONS OF CODIMENSION TWO SURFACES WITH CURVATURE PINCHING IN ℝ4

  • Ji, Zhengchao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.1049-1060
    • /
    • 2020
  • We prove rigidity theorems for ancient solutions of geometric flows of immersed submanifolds. Specifically, we find conditions on the second fundamental form that characterize the shrinking sphere among compact ancient solutions for the mean curvature flow in codimension two surfaces, which is different from the conditions of Risa and Sinestrari in [26] and we also remove the condition that the second fundamental form is uniformly bounded when t ∈ (-∞, -1).

An Experimental Study of Turbulent Uniform Shear Flow in a Nearly Two-Dimensional $90^{\circ}$ Curved Duct (I) - Mean Flow Field- (2차원 $90^{\circ}$ 곡관에서 균일전단류의 특성에 대한 실험적 연구 (1) -평균유동장-)

  • 임효재;성형진;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.834-845
    • /
    • 1995
  • An experimental study is made in a nearly two-dimensional 90.deg. curved duct to investigate the effects of interaction between streamline curvature and mean strain on turbulence. The initial shear at the entrance to the curved duct is varied by an upstream shear generator to produce five different shear conditions ; a uniform flow (UF), a positive weak shear (PW), a positive strong shear(PS), a negative weak shear (NW) and a negative strong shear(NS). With the mean field data of the case UF, variations of the momentum thickness, the shape factor and the skin friction over the convex(inner) surface and the concave (outer) surface are scrutinized quantitatively in-depth. It is found that, while the pressure loss due to curvature is insensitive to the inlet shear rates, the distributions of wall static pressure along both convex and concave surfaces are much influenced by the inlet shear rates.

DEFORMING PINCHED HYPERSURFACES OF THE HYPERBOLIC SPACE BY POWERS OF THE MEAN CURVATURE INTO SPHERES

  • Guo, Shunzi;Li, Guanghan;Wu, Chuanxi
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.737-767
    • /
    • 2016
  • This paper concerns closed hypersurfaces of dimension $n{\geq}2$ in the hyperbolic space ${\mathbb{H}}_{\kappa}^{n+1}$ of constant sectional curvature evolving in direction of its normal vector, where the speed equals a power ${\beta}{\geq}1$ of the mean curvature. The main result is that if the initial closed, weakly h-convex hypersurface satisfies that the ratio of the biggest and smallest principal curvature at everywhere is close enough to 1, depending only on n and ${\beta}$, then under the flow this is maintained, there exists a unique, smooth solution of the flow which converges to a single point in ${\mathbb{H}}_{\kappa}^{n+1}$ in a maximal finite time, and when rescaling appropriately, the evolving hypersurfaces exponential convergence to a unit geodesic sphere of ${\mathbb{H}}_{\kappa}^{n+1}$.

Measurement of turbulent flow characteristics of rotating square duct with a $90^{\circ}$ bend (회전하는 정사각단면의 $90^{\circ}$곡관내 난류유동에 관한 실험적 연구)

  • 이건휘;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2223-2236
    • /
    • 1995
  • 0The fields of turbomachinery and electrical generators provide many examples of flow through rotating internal passages. At the practicing Reynolds number, most of the flow motion is three dimensional and highly turbulent. The proper understanding for the characteristics of these turbulent flow is necessary for the design of thermo-fluid machinery of a good efficiency. The flow characteristics in the rotating duct with curvature are very complex in practice due to the curvature and rotational effect of the duct. The understanding of the effect of the curvature on the structure and rotational effect of the duct. The understanding of the effect of the curvature on the structure of turbulence in the curved passage and the characteristics of the flow in a rotating radial straight channel have been well studied separately by many workers. But the combined effects of curvature and rotation on the flow have not been well understood inspite of the importance of the phenomena in the practical design process. In this study, the characteristics of a developing turbulent flow in a square sectioned 90.deg. bend rotating at a constant angular velocity are measured by using hot-wire anemometer to seize the rotational effects on the flow characteristics. As the results of this study, centrifugal forces associated with the curvature of the bend and Coriolis forces and centripetal forces associated with the rotational affect directly both the mean motion and the turbulent fluctuations.

DNS of turbulent concentric annular pipe flow (동심 환형관 내의 난류유동의 직접수치모사)

  • Chung, Seo-Yoon;Rhee, Gwang-Hoon;Sung, Hyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.461-466
    • /
    • 2000
  • Direct numerical simulations (DNS) is carried out to study fully-developed turbulent concentric annular pipe flow with two radius ratios at $Re_{Dh}\;=\;8900$. In case of $R_1/R_2\;=\;0.5$, the present result for the mean flow is in good agreement with the previous experimental data. Because of the transverse curvature effects, the distributions of mean flow and turbulent intensities are asymmetric in contrast to those of other fully-developed flows (channel and pipe flow). From the distributions of skewness of radial velocity fluctuations, it co be identified that all of the characteristics of channel, pipe and turbulent flow on a cylinder in axial flow can be appeared in concentric annular pipe flow.

  • PDF

Edge preserving method using mean curvature diffusion in aerial imagery

  • Ye, Chul-Soo;Kim, Kyoung-Ok;Yang, Young-Kyu;Lee, Kwae-Hi
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.54-58
    • /
    • 2002
  • Mean curvature diffusion (MCD) is a selective smoothing technique that promotes smoothing within a region instead of smoothing across boundaries. By using mean curvature diffusion, noise is eliminated and edges are preserved. In this paper, we propose methods of automatic parameter selection and implementation for the MCD model coupled to min/max flow. The algorithm has been applied to high resolution aerial images and the results show that noise is eliminated and edges are preserved after removal of noise.

  • PDF