• Title/Summary/Keyword: mechanochemical reaction

Search Result 32, Processing Time 0.025 seconds

Nano-particles of Mechanochemical Synthesis

  • Urakaev, Farit Kh.
    • Journal of the Speleological Society of Korea
    • /
    • no.71
    • /
    • pp.5-11
    • /
    • 2006
  • A theoretical investigation of the solid phase mechanochemical synthesis of nano sized target product on the basis of dilution of the initial powdered reagent mixture by another product of an exchange reaction is presented. On the basis of the proposed 3 mode particle size distribution in mechanically activated mixture, optimal molar ratios of the components in mixture are calculated, providing the occurrence of impact friction contacts of reagent particles and excluding aggregation of the nanosized particles of the target reaction product. Derivation of kinetic equations for mechanochemical synthesis of nanoscale particles by the final product dilution method in the systems of exchange reactions is submitted. On the basis of obtained equations the necessary times of mechanical activation for complete course of mechanochemical reactions are designed. Kinetics of solid phase mechanosynthesis of nano TlCl by dilution of initial (2NaCl+$Tl_2SO_4$) mixture with the exchange reaction product (diluent,$zNa_2SO_4$, z=z*=11.25) was studied experimentally. Some peculiar features of the reaction mechanism were found. Parameters of the kinetic curve of nano TlCl obtained experimentally were compared with those for the model reaction KBr+TlCl+zKCl=(z+1) KCl+TlBr (z=z1*=13.5), and for the first time the value of mass transfer coefficient in a mechanochemical reactor with mobile milling balls was evaluated. Dynamics of the size change was followed for nanoparticle reaction product as a function of mechanical activation time.

A Study on the Nano-Deformation Behaviors of Single Crystal Silicon and Amorphous Borosilicate Considering the Mechanochemical Reaction (기계화학적 반응을 고려한 단결정 실리콘과 비정질 보로실리케이트의 나노 변형 거동에 관한 연구)

  • 윤성원;신용래;강충길
    • Transactions of Materials Processing
    • /
    • v.12 no.7
    • /
    • pp.623-630
    • /
    • 2003
  • Nanomachining process, static nanoplowing, is one of the most promising lithographic technologies in terms of the low cost of operation and variety of workable materials. In nanomachining process, chemical effects are more dominant factor compared with those by physical deformation or fracture. For example, during the nanoscratch on a silicon surface in the atmosphere, micro protuberances are formed due to the mechanochemical reaction between diamond tip and the surfaces. On the contrary, in case of chemically stable materials, such as ceramic or glass, surface protuberances are not formed. The purpose of this study is to understand effects of the mechanochemical reaction between tip and surfaces on deformation behaviors of hard-brittle materials. Nanometerscale elasoplastic deformation behavior of single crystal silicon (100) was characterized with micro protuberance phenomena, and compared with that of borosilicate (Pyrex glass 7740). In addition, effects of the silicon protuberances on nanoscratch test results were discussed.

Theory of Nanoparticles Mechanosynthesis

  • Urakaev, Farit Kh.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.405-406
    • /
    • 2005
  • A theoretical investigation of the solid-phase mechanochemical synthesis of nano-sized target product on the basis of dilution of the initial powdered reagent mixture by another product of an exchange reaction is presented. On the basis of the proposed 3-mode particle size distribution in mechanically activated mixture, optimal molar ratios of the components in mixture are calculated, providing the occurrence of impact-friction contacts of reagent particles and excluding aggregation of the nanosized particles of the target reaction product. Derivation of kinetic equations for mechanochemical synthesis of nanoscale particles by the final product dilution method in the systems of exchange reactions is submitted. On the basis of obtained equations the necessary times of mechanical activation for complete course of mechanochemical reactions are designed. Kinetics of solid phase mechanosynthesis of nano-TlCl by dilution of initial (2NaCl + $Tl_2SO_4$) mixture with the exchange reaction product (diluent, $zNa_2SO_4$, $z=z^*=11.25$) was studied experimentally. Some peculiar features of the reaction mechanism were found. Parameters of the kinetic curve of nano-TlCl obtained experimentally were compared with those for the model reaction KBr + TlCl + zKCl = (z + 1) KCl + TlBr ($z=z_l^*=13.5$), and for the first time the value of mass transfer coefficient in a mechanochemical reactor with mobile milling balls was evaluated. Dynamics of the size change was followed for nanoparticle reaction product as a function of mechanical activation time.

  • PDF

Nanodeformation Behaviors of the Single Crystal Silicon and the Pyrex glass 7740 during Nanoscratch (나노스크래치 공정에서 단결정 실리론 및 파이렉스 7740 의 나노변형거동)

  • 신용래;윤성원;강충길
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.363-366
    • /
    • 2003
  • In nanomachining processes, chemical effects are more dominant factor compared with physical deformation. For example, during the nanoscratch on a silicon surface in the atmosphere, micro protuberances are formed due to the mechanochemical reaction between the diamond tip and the surface. On the contrary, in case of chemically stable materials, such as ceramics or glasse, the surface protuberance are not formed. The purpose of this study is to understand effects of the mechanochemical reaction between tip and surfaces on deformation behaviors of hard-brittle materials. Nanometerscale elasoplastic deformation behavior of single crystal silicon (100) was characterized with the surface protuberance phenomena, and compared with that of borosilicate (Pyrex glass 7740).

  • PDF

Fabrication of SiC-TiC Composites via Mechanochemical Synthesis

  • Park, Heon-Jin;Lee, Ki-Min;Kim, Hyung-Jong;Lee, June-Gunn
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.4
    • /
    • pp.314-318
    • /
    • 2001
  • SiC-TiC composites have been fabricated by using a mechanochemical processing of a mixture of Si, Ti, and C at room temperature and subsequent hot pressing. TiC powders have been obtained by the mechanochemical processing of a mixture of Ti and C whereas SiC powders has not been obtained from a mixture of Si and C. By using the exothermic reaction between Ti and C, SiC-TiC powder could be obtained from the mixture of Si, Ti, and C using the mechanochemical processing for more than 12h. The X-ray diffraction analysis has shown that the powder subjected to the mechanochemical processing consisted of the particles having crystallite size below 10nm. Fully densified SiC-TiC composites have been obtained by hot-pressing of the powder at 1850$\^{C}$ for 3h and it has shown comparable mechanical properties to those of the SiC-TiC composites prepared from the commercially available SiC and TiC powders. Flexural strength of 560 MPa and fracture toughness of 4.8 MP$.$am$\_$1/2/ have been shown for the SiC-TiC composites with composition corresponding to 0.75:0.25:1 mole ratio of Si:Ti:C.

  • PDF

Synthesis of $Zn(BH_4)_2$ powders by mechanochemical reaction and study of thermal decomposition behavior (기계 화학적 반응법을 이용한 $Zn(BH_4)_2$ 분말의 합성과 열분해 특성)

  • Jeon Eun;Jo Yeong Hwan
    • 한국전기화학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.373-378
    • /
    • 2005
  • [ $Zn(BH_4)_2$ ] ($8.4\;wt\%$ theoretical hydrogen storage capacity) powders have been successfully synthesized by mechanochemical reaction from mixtures of $ZnCl_2$ and $NaBH_4$ powders in a 1:2 molar ratio in different times. $$ZnCl_2\;+\;2NaBH_4\rightarrow\;Zn(BH_4)_2\;+\;2NaCl\;(1)$$ $Zn(BH_4)_2$ powders were characterized by X-ray diffractometry(XRD), and Furier Transform Infrared spectrometry(FT-IR). The thermal stabilities of $Zn(BH_4)_2$ powders were studied by Differential scanning calorimetry(DSC), Thermogravimetry analysis(TGA), and Mass spectrometry(MS). $Zn(BH_4)_2$ can be tested for hydrogen evolution without further purification. The reaction to yield hydrogen is irreversible, the other products being compounds of Zn, and borane. $Zn(BH_4)_2$ thermally decomposes to release borane and hydrogen gas between about 85 and $150^{\circ}C$.

  • PDF

Synthesis of TiN/TiB2/Ti-silicides Nanocomposite Powders by Mechanochemical Reaction and its Reaction Mechanism (기계화학반응에 의한 TiN/TiB2/Ti-silicides 나노복합분말의 합성과 반응기구)

  • Cho Young-Whan;Kim Ji-Woo;Shim Jae-Hyeok;Ahn Jae-Pyoung;Oh Kyu-Hwan
    • Journal of Powder Materials
    • /
    • v.12 no.4 s.51
    • /
    • pp.273-278
    • /
    • 2005
  • Nanostructured TiN/$TiB_2$/$TiSi_2$ and TiN/$TiB_2$/$Ti_5Si_2$ composite powders have been prepared by mechanochemical reaction from mixtures of Ti, BN, and $Si_3N_4$ powders. The raw materials have reacted to form a uniform mixture of TiN, $TiB_2$ and $TiSi_2$ or $Ti_5Si_3$ depending on the amount of $Si_3N_4$ used in the starting mixtures, and the reaction proceeded through so-called mechanically activated self-sustaining reaction (MSR). Fine TiN and $TiB_2$ crystallites less than a few tens of nanometer were homogeneously dispersed in the amorphous $TiSi_2$ or $Ti_5Si_3$ matrix after milling for 12 hours. These amorphous matrices became crystalline phases after annealing at high temperatures as expected, but the original microstructure did not change significantly.

Synthesis and Phase Transformation Behavior of YAG Powders by a Mechanochemical Solid Reaction (기계화학적 고상반응에 의한 YAG 분말의 합성 및 상 형성 거동에 관한 연구)

  • Jung Hyun-Gi;Hwang Gil-Ho;Lim Kwang-Young;Lee Young-Hun;Kang Sung-Goon
    • Journal of Powder Materials
    • /
    • v.13 no.4 s.57
    • /
    • pp.243-249
    • /
    • 2006
  • Yttrium aluminum garnet (YAG) powders were synthesized via mechanochemical solid reaction using $Y_2O_3$ with three types of aluminum compounds. $Y_2O_3$ reacted mechanochemically with all A1 compounds and formed YAM (yttrium aluminum monoclinic), YAG and YAP (yttrium aluminum perovskite) phases depending on the starting materials. The ground samples containing ${\gamma}-A1_2O_3$ showed the best reactivity, whereas the ground sample containing A100H, which had the largest surface area, exhibited pure YAG after calcination at $1200^{\circ}C$. The sample containing Al had the least reactivity, producing YAP along with YAG at $1200^{\circ}C$. The types and grinding characteristics of the starting materials and grinding time are believed to be important factors in the mechanochemical synthesis of YAG.

Mechanochemical Synthesis of ZnMn2O4 and its Electrochemical Properties as an Anode Material for Lithium-ion Batteries

  • Park, Yoon-Soo;Oh, Hoon;Lee, Sung-Man
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3333-3337
    • /
    • 2011
  • $ZnMn_2O_4$ has been prepared by a mechanochemical process using a mixture of $Mn_2O_3$ and ZnO as starting materials, and investigated as a possible anode material for lithium-ion batteries. The phase evolution and morphologies of the ball-milled and annealed powders are characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy dispersive microanalysis (EDX), respectively. The solid-state reaction for the formation of $ZnMn_2O_4$, under the given experimental conditions, is achieved in a short time (30 min), and the prepared samples exhibit excellent electrochemical performances including an enhanced initial coulombic efficiency, high reversible capacity, and stable capacity retention with cycling.