• Title/Summary/Keyword: membrane-ordering effects

Search Result 9, Processing Time 0.025 seconds

Membrane-Ordering Effects of Barbiturates on Pure Phospholipid Model Membranes

  • Knag, Jung-Sook;Chung, Young-Za;Cho, Goon-Jae;Byun, Won-Tan;Yun, Il
    • Archives of Pharmacal Research
    • /
    • v.15 no.3
    • /
    • pp.196-203
    • /
    • 1992
  • Intramolecular excimer formation of 1, 3-di(1-pyrenyl)propane (Py-3-Py) and fluorescence polarization of 1, 6-diphenyl-1, 3, 5-hexatriene (DPH) were used to investigate the effects of barbiturates on the fluidity of model membranes of phosphatidycholine (SPMVPC), phosphatidylserine (SPMVPS), and phosphatidylinositol (SPMVPI) fractions of synaptosomal plasma membrane vesicles (SPMV) isolated from bovine cerebral cortex. In a dose-dependent manner, barbiturates decreased the excimer to monomer fluorescence intensity ratio (I'/I) of Py-3-Py and increased the anisotropy(r), rotational relaxation time (P), limiting anisotropy $(r_infty)$, and order parameter (S) of DPH in SPMVPC, SPMVPS and SPMVPI. This indicates that barbiturates decreased both the lateral and rotational diffusion of the probes in SPMVPC, SPMVPS and SPMVPI. The relative potencies of barbiturates in ordering the membranes were in the order: pentobarbital > hexobarbital > amobarbital > phenobarbital. This order correlates well with the anesthetic potencies of barbiturates and the potencies for enhancement of $\gamma$-aminobutyric acid-stimulated chloride uptake. Thus, it is strongly suggested that a close relationship might exist between the membrane ordering effects of barbiturates and the chloride fluxes across SPMV.

  • PDF

Effects of Barbiturates on the Fluidity of Phosphatidylethanolamine Model Membranes (Barbiturates가 소의 신선한 대뇌피질 Synaptosomal Plasma Membrane Vesicles로 부터 추출하여 제제한 Phosphatidylethanolamine 인공세포막의 유동성에 미치는 영향)

  • Yun, Il;Kim, Hyung-Il;Hwang, Tae-Ho;Kim, Jong-Ryol;Kim, In-Se;Chung, Yong-Za;Shin, Yong-Hee;Jung, Hyun-Ok;Kang, Jung-Sook
    • The Korean Journal of Pharmacology
    • /
    • v.26 no.2
    • /
    • pp.209-217
    • /
    • 1990
  • Intramolecular excimer formation with 1,3-di(1-pyrenyl)propane (Py-3-Py) and fluorescence polarization with 1,6-diphenyl-1,3,5-hexatriene (DPH) were used to evaluate the effects of barbiturates on the bulk fluidity of the model membranes of phosphatidylethanolamine fraction of synaptosomal plasma membrane vesicles (SPMVPE) isolated from bovine cerebral cortex. In the SPMVPE, barbiturates decreased the excimer to monomer fluorescence intensity ratio (I'/I) of Py-3-Py and increased the fluorescence polarization (P), anisotropy (r), limiting anisotropy $(r_{8})$, order parameter (S) and rotational relaxation time $({\bar{P}})$ of DPH in a dose-dependent manner. The relative potencies of barbiturates to order the SPMVPE were in the order: pentobarbital > hexobarbital > amobarbital > phenobarbital. Hence, it is concluded that barbiturates have ordering effects on the SPMVPE. And the membrane-ordering potencies of barbiturates appear to be correlated with the potencies for enhancement of GABA-stimulated chloride influx and with the anesthetic effects of barbiturates.

  • PDF

Effects of Chlorpromazine·HCl on the Structural Parameters of Bovine Brain Membranes

  • Jang, Hye-Ock;Jeong, Dong-Keun;Ahn, Shin-Ho;Yoon, Chang-Dae;Jeong, Soo-Cheol;Jin, Seong-Deok;Yun, Il
    • BMB Reports
    • /
    • v.37 no.5
    • /
    • pp.603-611
    • /
    • 2004
  • Fluorescence probes located in different membrane regions were used to evaluate the effects of chlorpromazine HCl on structural parameters (transbilayer lateral mobility, annular lipid fluidity, protein distribution, and lipid bilayer thickness) of synaptosomal plasma membrane vesicles (SPMVs) isolated from bovine cerebral cortex. The experimental procedure was based on the selective quenching of 1,3-di(1-pyrenyl)propane (Py-3-Py) by trinitrophenyl groups, radiationless energy transfer from the tryptophan of membrane proteins to Py-3-Py, and energy transfer from Py-3-Py monomers to 1-anilinonaphthalene-8-sulfonic acid (ANS). In this study, chlorpromazine HCl decreased the lateral mobility of Py-3-Py in a concentration dependent-manner, showed a greater ordering effect on the inner monolayer than on the outer monolayer, decreased annular lipid fluidity in a dose dependent-manner, and contracted the membrane lipid bilayer. Furthermore, the drug was found to have a clustering effect on membrane proteins.

Effects of Chlorhexidine Digluconate on Rotational Rate of n-(9-Anthroyloxy)stearic Acid in Porphyromonas ginginvalis Outer Membranes

  • Jang, Hye-Ock;Cha, Seong-Kweon;Lee, Chang;Choi, Min-Gak;Huh, Sung-Ryul;Shin, Sang-Hun;Chung, In-Kyo;Yun, Il
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.3
    • /
    • pp.125-130
    • /
    • 2003
  • The aim of this study was to provide a basis for studying the molecular mechanism of pharmacological action of chlorhexidine digluconate. Fluorescence polarization of n-(9-anthroyloxy)stearic acid was used to examine the effect of chlorhexidine digluconate on differential rotational mobility of different positions of the number of membrane bilayer phospholipid carbon atoms. The six membrane components differed with respect to 2, 3, 6, 9, 12, and 16-(9-anthroyloxy)stearic acid (2-AS, 3-AS, 6-AS, 9-AS, 12-AS and 16-AP) probes, indicating different membrane fluidity. Chlorhexidine digluconate increased the rate of rotational mobility of hydrocarbon interior of the cultured Porphyromonas gingivalis outer membranes (OPG) in a dose-dependent manner, but decreased the mobility of surface region (membrane interface) of the OPG. Disordering or ordering effects of chlorhexidine digluconate on membrane lipids may be responsible for some, but not all of its bacteriostatic and bactericidal actions.

Effects of Chlorhexidine digluconate on Rotational Rate of n-(9-Anthroyloxy)stearic acid in Model Membranes of Total Lipids Extracted from Porphyromonas gingivalis Outer Membranes

  • Jang, Hye-Ock;Kim, Dong-Won;Kim, Byeong-Ill;Sim, Hong-Gu;Lee, Young-Ho;Lee, Jong-Hwa;Bae, Jung-Ha;Bae, Moon-Kyoung;Kwon, Tae-Hyuk;Yun, Il
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.2
    • /
    • pp.83-88
    • /
    • 2004
  • The purpose of this study was to provide a basis for studying the molecular mechanism of pharmacological action of chlorhexidine digluconate. Large unilamellar vesicles (OPGTL) were prepared with total lipids extracted from cultured Porphyromonas gingivalis outer membranes (OPG). The anthroyloxy probes were located at a graded series of depths inside a membrane, depending on its substitution position (n) in the aliphatic chain. Fluorescence polarization of n-(9-anthroyloxy)stearic acid was used to examine effects of chlorhexidine digluconate on differential rotational mobility, while changing the probes' substitution position (n) in the membrane phospholipids aliphatic chain. Magnitude of the rotational mobility of the intact six membrane components differed depending on the substitution position in the descending order of 16-(9-anthroyloxy)palmitic acid (16-AP), 12, 9, 6, 3 and 2-(9-anthroyloxy)stearic acid (12-AS, 9-AS, 6-AS, 3-AS and 2-AS). Chlorhexidine digluconate increased in a dose-dependent manner the rate of rotational mobility of hydrocarbon interior of the OPGTL prepared with total lipids extracted from cultured OPG, but decreased the mobility of membrane interface of the OPGTL. Disordering or ordering effects of chlorhexidine digluconate on membrane lipids may be responsible for some, but not all of its bacteriostatic and bactericidal actions.

Differential Effects of Local Anesthetics on Rate of Rotational Mobility between Hydrocarbon Interior and Surface Region of Model Membrane Outer Monolayer

  • Chung, In-Kyo;Cha, Seong-Kweon;Chung, Yong-Za;Kim, Bong-Sun;Choi, Chang-Hwa;Cho, Goon-Jae;Jang, Hye-Ock;Yun, Il
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.1
    • /
    • pp.41-46
    • /
    • 2000
  • Using fluorescence polarization of 12-(9-anthroyloxy)stearic acid (12-AS) and 2-(9-anthroyloxy)stearic acid (2-AS), we evaluated the differential effects of local anesthetics on differential rotational rate between the surface (in carbon number 2 and its surroundings including the head group) and the hydrocarbon interior (in carbon number 12 and its surroundings) of the outer monolayer of the total lipid fraction liposome extracted from synaptosomal plasma membrane vesicles. The anisotropy (r) values for the hydrocarbon interior and the surface region of the liposome outer monolayer were $0.078{\pm}0.001$ and $0.114{\pm}0.001,$ respectively. This means that the rate of rotational mobility in the hydrocarbon interior is faster than that of the surface region. In a dose-dependent manner, the local anesthetics decreased the anisotropy of 12-AS in the hydrocarbon interior of the liposome outer monolayer but increased the anisotropy of 2-AS in the surface region of the monolayer. These results indicate that local anesthetics have significant disordering effects on the hydrocarbon interior but have significant ordering effects on the surface region of the liposome outer monolayer.

  • PDF

pH Stress Alters Cytoplasmic Membrane Fluidity and atpB Gene Expression in Streptococcus mutans (pH stress가 Streptococcus mutans의 형질막 유동성 및 atpB 유전자 발현에 미치는 영향)

  • Cho, Chul Min;Jung, Seung Il;Kim, Myung Sup;Lee, Sae A;Kang, Jung Sook
    • Journal of Life Science
    • /
    • v.27 no.1
    • /
    • pp.15-22
    • /
    • 2017
  • Streptococcus mutans (S. mutans), which plays a major role in the etiology of human dental caries, is able to tolerate exposure to acid shock in addition to its acidogenicity. We investigated the effects of pH stress on membrane fluidity, activities and expression levels of F-ATPase, and proton permeability in S. mutans. Using 1,6-diphenyl-1,3,5-hexatriene, we observed membrane ordering at pH 4.8 and pH 8.8. The ordering effects were larger at pH 4.8 in cytoplasmic membranes isolated from S. mutans (CMSM). Increasing pH resulted in a decrease in the activities and expression levels of F-ATPase. The proton permeability was decreased at both acidic and alkaline pHs, and the lowest permeability was observed at pH 4.8. The lower permeability at pH 8.8 than pH 6.8 is likely to be caused by the decreased proton influx due to the decreased CMSM fluidity. In addition, it seems to be evident that extremely low permeability at pH 4.8 was caused by the decreased proton influx due to the decreased CMSM fluidity as well as the increased proton efflux due to the increased activity and expression level of F-ATPase. It is likely that CMSM fluidity and F-ATPase activity are two major key factors that determine proton permeability in S. mutans. We suggest that CMSM fluidity plays an important role in the determination of proton permeability, which sheds light on the possibility of using nonspecific membrane fluidizers, e.g., ethanol, for anti-caries purposes.

Effects of Barbiturates on Transbilayer Fluidity Domains of Phospholipid Model Membrane Monolayers (Barbiturates가 소의 대뇌피질 Synaptosomal Plasma Membrane Vesicles로 부터 추출 제제한 총지질 및 총인지질 인공세포막에 형성된 비대칭적 유동성에 미치는 비대칭적 영향)

  • Yun, Il;Kang, Jung-Sook
    • The Korean Journal of Pharmacology
    • /
    • v.28 no.1
    • /
    • pp.103-114
    • /
    • 1992
  • Selective quenching of 1,6-diphenyl-1,3,5-hexatriene (DPH) by trinitrophenyl groups was utilized to examine the transbilayer fluidity domains of the model membranes of total lipids (SPMVTL) and phospholipids (SPMVPL) extracted from synaptosomal plasma membrane vesicles. At $37^{\circ}C$, all anisotropy (r), limiting anisotropy $(r_{\infty})$, and order parameter (S) values of DPH in the SPMVTL were larger than those in SPMVPL. The anisotropy, limiting anisotropy, and order parameter of DPH in the inner monolayer were 0.025, 0.033, and 0.070, respectively, greater than calculated for the outer monolayer of SPMVTL. In SPMVPL, the anisotropy, limiting anisotropy, and order parameter of DPH in the inner monolayer were 0.014, 0.018, and 0.047, respectively, greater than calculated for the outer monolayer. Selective quenching of DPH by trinitrophenyl groups was also utilized to examine the effects of barbiturates on the transbilayer fluidity domains of SPMVTL and SPMVPL. Barbiturates did not affect the anisotropy of DPH in the transbilayer domains of SPMVTL. In contrast, barbiturates increased the fluorescence anisotropy, limiting anisotropy, and order parameter of DPH in the SPMVPL in a dose-dependent manner. Barbiturates showed a greater ordering effect on the outer monolayer as compared to the inner monolayer of SPMVPL. Hence, it has been demonstrated for the first time that the Sheetz-Singer hypothesis (1974) may be valid for phospholipid model membranes.

  • PDF

Effects of Local Anesthetics on the Rate of Rotational Mobility of Phospholipid Liposomes

  • Chung, In-Kyo;Kim, Dae-Gyeong;Chung, Yong-Za;Kim, Bong-Sun;Choi, Chang-Hwa;Cho, Goon-Jae;Jang, Hye-Ock;Yun, Il
    • BMB Reports
    • /
    • v.33 no.3
    • /
    • pp.279-284
    • /
    • 2000
  • Using fluorescence probes, 2-(9-anthroyloxy) stearic acid (2- AS) and 12-(9-anthroyloxy) stearic acid (12-AS), we determined the differential effects of local anesthetics (tetracaine-HCI, bupivacaine-HCI, lidocaine-HCI, prilocaine-HCI and procaine-HCI) on the differential rotational rate between the surface (in carbon number 2 and its surroundings including the head group) and the hydrocarbon interior (in carbon number 12 and its surroundings) of the outer monolayer of the total phospholipid fraction liposome that is extracted from synaptosomal plasma membrane vesicles. The anisotropy (r) values for the hydrocarbon interior and the surface region of the liposome outer monolayer were$0.051{\pm}0.001$ and $0.096{\pm}0.001,$ respectively. This means that the rate of rotational mobility in the hydrocarbon interior is faster than that of the surface region. Local anesthetics in a dosedependent manner decreased the anisotropy of 12-AS in the hydrocarbon interior of the liposome outer monolayer, but increased the anisotropy of 2-AS in the surface region of the monolayer. These results indicate that local anesthetics have significant disordering effects on the hydrocarbon interior, but have significant ordering effects on the surface region of the liposome outer monolayer.

  • PDF