• Title/Summary/Keyword: memory sharing

Search Result 170, Processing Time 0.028 seconds

The Effect of Transactive Memory Capability and Social Capital on Knowledge Sharing Intention: Moderating Effect of Tenure (트랜잭티브 메모리 역량과 사회적 자본이 지식공유의도에 미치는 영향: 근속년수의 조절효과)

  • Han, Su Jin
    • Journal of Information Technology Applications and Management
    • /
    • v.29 no.4
    • /
    • pp.35-49
    • /
    • 2022
  • Knowledge sharing occurs through voluntary interactions between human actors. In this paper, from the perspective of social interaction, the effect of transactive memory capability and social capital (bridging social capital and bonding social capital) on knowledge sharing intention was analyzed, and tenure was demonstrated as a moderating factor that can strengthen their relationship. Therefore, the results of this study are summarized as follows. First, it was verified that the transactive memory capability had a significant positive effect on the knowledge sharing intention. Second, it was found that the bridging social capital and bonding social capital held by individuals had a significant positive effect on knowledge sharing intention. Social capital is understood to form an individual's voluntary motivation for knowledge sharing. Third, it was verified that the moderating effect of tenure suggested in this study was not significant. Based on the results of this study, implications and future research directions were presented.

Effects of Network Positions of Organizational Members on Knowledge Sharing (조직구성원의 네트워크 위치가 지식공유에 미치는 영향)

  • Kim, Chang-Sik;Kwhak, Kee-Young
    • Knowledge Management Research
    • /
    • v.16 no.2
    • /
    • pp.67-89
    • /
    • 2015
  • Improving productivity of knowledge workers is an important issue in the 21st century referred as knowledge-based society. The core key word is knowledge sharing among constituents of an organization. The purpose of this study is to combine the social network position factors with attitude and behavior factors, and develop an integrated research model for the knowledge sharing among members of an organization. This study adopted the integrated theoretical framework based on social capital, self-efficacy, transactive memory, and knowledge sharing. Surveys were conducted to 42 organizational members from a department in a leading IT outsourcing company to empirically test the proposed research model. In order to validate the proposed research model, social network analysis tool, UCINET, a structural equation modeling tool, SmartPLS, were utilized. The empirical result showed that, first of all, organizational members' familiarity network position had significant influence on knowledge self-efficacy and transactive memory capability. Second, knowledge self-efficacy and transactive memory capability affected knowledge sharing intention. Third, knowledge sharing intention also had an impact on the job performance. However, organizational members' expertise network position had no significant influence on knowledge self-efficacy and transactive memory capability. This finding reveals the importance of the emotional approach rather than the rational approach in knowledge management. The theoretical and practical implications on the research findings were discussed along with limitations.

The Impacts of Positive Festival Memory on Traveler's Experience Sharing: An Online Friendship Moderation Model

  • Kim, Hyeon-Cheol;Zhu, Zong-Yi
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.176-184
    • /
    • 2021
  • This study aims to examine 1) the influence of festival emotional and function values on travelers' positive festival memory, festival attachment, and experience sharing behavior, and (2) the moderation effect of online friendship among the path. In the present study, the proposed model was developed based on the MTS from 340 collected participants who have experienced the festival held in Guangdong Province in China. The SPSS and AMOS were used for statistical analysis. The results revealed that emotional and function festival values are positively related to the positive festival memory of travelers; positive festival memory significantly influences festival attachment and experience sharing behavior of travelers. Meanwhile, festival attachment also has a significantly positive effect on the experience-sharing behavior of travelers. Moreover, the presented differential experience sharing behavior of travelers follows the level of their online friendship. Travelers with high online friendships presented higher sharing behavior than travelers with low online friendships. Depending on the results of this study, we could provide some theoretical implications for future festival research and online communication research. These results could provide some practical implications for festival managers to develop more communication strategies.

Reducing False Sharing based on Memory Reference Patterns in Distributed Shared Memory Systems (분산 공유 메모리 시스템에서 메모리 참조 패턴에 근거한 거짓 공유 감속 기법)

  • Jo, Seong-Je
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.4
    • /
    • pp.1082-1091
    • /
    • 2000
  • In Distributed Shared Memory systems, false sharing occurs when two different data items, not shared but accessed by two different processors, are allocated to a single block and is an important factor in degrading system performance. The paper first analyzes shared memory allocation and reference patterns in parallel applications that allocate memory for shared data objects using a dynamic memory allocator. The shared objects are sequentially allocated and generally show different reference patterns. If the objects with the same size are requested successively as many times as the number of processors, each object is referenced by only a particular processor. If the objects with the same size are requested successively much more than the number of processors, two or more successive objects are referenced by only particular processors. On the basis of these analyses, we propose a memory allocation scheme which allocates each object requested by different processors to different pages and evaluate the existing memory allocation techniques for reducing false sharing faults. Our allocation scheme reduces a considerable amount of false sharing faults for some applications with a little additional memory space.

  • PDF

Object-Size and Call-Site Tracing based Shared Memory Allocator for False Sharing Reduction in DSM Systems (분산 공유 메모리 시스템에서 거짓 공유를 줄이는 객체-크기 및 호출지-추적 기반 공유 메모리 할당 기법)

  • Lee, Jong-Woo;Park, Young-Ho;Yoon, Yong-Ik
    • Journal of Digital Contents Society
    • /
    • v.9 no.1
    • /
    • pp.77-86
    • /
    • 2008
  • False sharing is a result of co-location of unrelated data in the same unit of memory coherency, and is one source of unnecessary overhead being of no help to keep the memory coherency in multiprocessor systems. Moreover, the damage caused by false sharing becomes large in proportion to the granularity of memory coherency. To reduce false sharing in page-based DSM systems, it is necessary to allocate unrelated data objects that have different access patterns into the separate shared pages. In this paper we propose sized and call-site tracing-based shared memory allocator, shortly SCSTallocator. SCSTallocator places each data object requested from the different call-sites into the separate shared pages, and at the same time places each data object that has different size into different shared pages. Consequently data objects that have the different call-site and different object size prohibited from being allocated to the same shared page. Our observations show that our SCSTallocator outperforms the existing dynamic shared memory allocators. By combining the two existing allocation technique, we can reduce a considerable amount of false sharing misses.

  • PDF

Yield Enhancement Techniques for 3D Memories by Redundancy Sharing among All Layers

  • Lee, Joo-Hwan;Park, Ki-Hyun;Kang, Sung-Ho
    • ETRI Journal
    • /
    • v.34 no.3
    • /
    • pp.388-398
    • /
    • 2012
  • Three-dimensional (3D) memories using through-silicon vias (TSVs) will likely be the first commercial applications of 3D integrated circuit technology. A 3D memory yield can be enhanced by vertical redundancy sharing strategies. The methods used to select memory dies to form 3D memories have a great effect on the 3D memory yield. Since previous die-selection methods share redundancies only between neighboring memory dies, the opportunity to achieve significant yield enhancement is limited. In this paper, a novel die-selection method is proposed for multilayer 3D memories that shares redundancies among all of the memory dies by using additional TSVs. The proposed method uses three selection conditions to form a good multi-layer 3D memory. Furthermore, the proposed method considers memory fault characteristics, newly detected faults after bonding, and multiple memory blocks in each memory die. Simulation results show that the proposed method can significantly improve the multilayer 3D memory yield in a variety of situations. The TSV overhead for the proposed method is almost the same as that for the previous methods.

An Efficient Repair Method to Reduce Area Overhead by Sharing Bitmap Memory (비트맵 메모리 공유를 통해 면적을 크게 줄인 효율적인 수리 방법)

  • Cho, Hyungjun;Kang, Sungho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.237-243
    • /
    • 2012
  • In recent system-on-chip (SoC) designs, several hundred embedded memory cores have occupied the largest portion of the chip area. Therefore, the yield of SoCs is strongly dependent on the yield of the embedded memory cores. If all memories had built-in self repair (BISR) with optimal repair rates, the area overhead would be very large. A bit-map sharing method using a memory grouping is proposed to reduce the area overhead. Since the bit-map memory occupies the largest portion of the area of the built-in redundancy analysis (BIRA), the proposed bit-map sharing method can greatly reduce the area overhead of the BIRA. Based on the experimental results, the proposed method can reduce the area overhead by about 80%.

Memory Allocation Scheme for Reducing False Sharing on Multiprocessor Systems (다중처리기 시스템에서 거짓 공유 완화를 위한 메모리 할당 기법)

  • Han, Boo-Hyung;Cho, Seong-Je
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.4
    • /
    • pp.383-393
    • /
    • 2000
  • In shared memory multiprocessor systems, false sharing occurs when several independent data objects, not shared but accessed by different processors, are allocated to the same coherency unit of memory. False sharing is one of the major factors that may degrade the performance of memory coherency protocols. This paper presents a new shared memory allocation scheme to reduce false sharing of parallel applications where master processor controls allocation of all the shared objects. Our scheme allocates the objects to temporary address space for the moment, and actually places each object in the address space of processor that first accesses the object later. Its goal is to allocate independent objects that may have different access patterns to different pages. We use execution-driven simulation of real parallel applications to evaluate the effectiveness of our scheme. Experimental results show that by using our scheme a considerable amount of false sharing faults can be reduced with low overhead.

  • PDF

JMP+RAND: Mitigating Memory Sharing-Based Side-Channel Attack by Embedding Random Values in Binaries (JMP+RAND: 바이너리 난수 삽입을 통한 메모리 공유 기반 부채널 공격 방어 기법)

  • Kim, Taehun;Shin, Youngjoo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.5
    • /
    • pp.101-106
    • /
    • 2020
  • Since computer became available, much effort has been made to achieve information security. Even though memory protection defense mechanisms were studied the most among of them, the problems of existing memory protection defense mechanisms were found due to improved performance of computer and new defense mechanisms were needed due to the advent of the side-channel attacks. In this paper, we propose JMP+RAND that embedding random values of 5 to 8 bytes per page to defend against memory sharing based side-channel attacks and bridging the gap of existing memory protection defense mechanism. Unlike the defense mechanism of the existing side-channel attacks, JMP+RAND uses static binary rewriting and continuous jmp instruction and random values to defend against the side-channel attacks in advance. We numerically calculated the time it takes for a memory sharing-based side-channel attack to binary adopted JMP+RAND technique and verified that the attacks are impossible in a realistic time. Modern architectures have very low overhead for JMP+RAND because of the very fast and accurate branching of jmp instruction using branch prediction. Since random value can be embedded only in specific programs using JMP+RAND, it is expected to be highly efficient when used with memory deduplication technique, especially in a cloud computing environment.

A Die-Selection Method Using Search-Space Conditions for Yield Enhancement in 3D Memory

  • Lee, Joo-Hwan;Park, Ki-Hyun;Kang, Sung-Ho
    • ETRI Journal
    • /
    • v.33 no.6
    • /
    • pp.904-913
    • /
    • 2011
  • Three-dimensional (3D) memories using through-silicon vias (TSVs) as vertical buses across memory layers will likely be the first commercial application of 3D integrated circuit technology. The memory dies to stack together in a 3D memory are selected by a die-selection method. The conventional die-selection methods do not result in a high-enough yields of 3D memories because 3D memories are typically composed of known-good-dies (KGDs), which are repaired using self-contained redundancies. In 3D memory, redundancy sharing between neighboring vertical memory dies using TSVs is an effective strategy for yield enhancement. With the redundancy sharing strategy, a known-bad-die (KBD) possibly becomes a KGD after bonding. In this paper, we propose a novel die-selection method using KBDs as well as KGDs for yield enhancement in 3D memory. The proposed die-selection method uses three search-space conditions, which can reduce the search space for selecting memory dies to manufacture 3D memories. Simulation results show that the proposed die-selection method can significantly improve the yield of 3D memories in various fault distributions.