• Title/Summary/Keyword: menadione sodium bisulfite

Search Result 3, Processing Time 0.016 seconds

Menadione Sodium Bisulfite-Protected Tomato Leaves against Grey Mould via Antifungal Activity and Enhanced Plant Immunity

  • Jo, Youn Sook;Park, Hye Bin;Kim, Ji Yun;Choi, Seong Min;Lee, Da Sol;Kim, Do Hoon;Lee, Young Hee;Park, Chang-Jin;Jeun, Yong-Chull;Hong, Jeum Kyu
    • The Plant Pathology Journal
    • /
    • v.36 no.4
    • /
    • pp.335-345
    • /
    • 2020
  • Tomato grey mould has been one of the destructive fungal diseases during tomato production. Ten mM of menadione sodium bisulfite (MSB) was applied to tomato plants for eco-friendly control of the grey mould. MSB-reduced tomato grey mould in the 3rd true leaves was prolonged at least 7 days prior to the fungal inoculation of two inoculum densities (2 × 104 and 2 × 105 conidia/ml) of Botrytis cinerea. Protection efficacy was significantly higher in the leaves inoculated with the lower disease pressure of conidial suspension compared to the higher one. MSB-pretreatment was not effective to arrest oxalic acid-triggered necrosis on tomato leaves. Plant cell death and hydrogen peroxide accumulation were restricted in necrotic lesions of the B. cinereainoculated leaves by the MSB-pretreatment. Decreased conidia number and germ-tube elongation of B. cinerea were found at 10 h, and mycelial growth was also impeded at 24 h on the MSB-pretreated leaves. MSB-mediated disease suppressions were found in cotyledons and different positions (1st to 5th) of true leaves inoculated with the lower conidial suspension, but only 1st to 3rd true leaves showed decreases in lesion sizes by the higher inoculum density. Increasing MSB-pretreatment times more efficiently decreased the lesion size by the higher disease pressure. MSB led to inducible expressions of defence-related genes SlPR1a, SlPR1b, SlPIN2, SlACO1, SlChi3, and SlChi9 in tomato leaves prior to B. cinerea infection. These results suggest that MSB pretreatment can be a promising alternative to chemical fungicides for environment-friendly management of tomato grey mould.

Simultaneous Application of Chemicals and Temperature for the Effective Control of Trouble Seaweed Ulva australis (구멍갈파래(Ulva australis) 생육제어 효과 증진을 위한 화합물 및 고온의 복합처리)

  • Kim, Jin-Seog;Kim, Bo Gwan;Kwak, Hwa Sook
    • Weed & Turfgrass Science
    • /
    • v.7 no.1
    • /
    • pp.35-45
    • /
    • 2018
  • The seaweed Ulva spp., which is frequently bloomed in coastal areas, have negatively affected on marine ecosystem and industrial activities. Therefore, many researches have been conducted to solve this problem in the worldwide. In this study, we carried out several experiments to develop the methods for effectively controlling Ulva growth through an alone or mixture application of chemical and temperature. Three chemical mixtures ($H_2O_2$+N-vanillylnonanamide; $H_2O_2$+nonanoic acid; $H_2O_2$+sodium citrate), those had a synergistic effect to the death of Ulva australis (ULAUS), were found out. On the other hand, the death of ULAUS was significantly enhanced and accelerated as some chemicals were briefly treated with warm water of $40^{\circ}C$ rather than $25^{\circ}C$, showing that peracetic acid 100 ppm, sodium percarbonate 100 ppm, and hydrogen peroxide 30 ppm has a better activity than that of sodium chlorite 200 ppm and menadione sodium bisulfite 4 ppm. In addition, a strong synergistic effect to the death of ULAUS thallus was also observed when the sodium citrate 1,000 ppm (pH 3.0) or acetic acid 200 ppm (pH 3.5) solution prepared in f/2 medium were treated in a short time at $40^{\circ}C$. However, an additive effect was only appeared as pH values of their solutions were increased to 8.0. Taken together, It seemed that our results could be developed as one of an eco-friendly practical measures useful for alleviating Ulva bloom in the future.