• Title/Summary/Keyword: methyl gallate

Search Result 76, Processing Time 0.027 seconds

The Effect of Methyl Gallate Isolated from Paeonia suffruticosa on Inflammatory Response in LPS-stimulated RAW264.7 Cells (목단피(牧丹皮) Methyl Gallate 성분의 항염증효능에 대한 연구)

  • Park, Yong-Ki;Min, Ji-Young;Lee, Je-Hyun
    • The Korea Journal of Herbology
    • /
    • v.24 no.4
    • /
    • pp.181-188
    • /
    • 2009
  • Objectives : In this study, we investigated the effect of methyl gallate of Paeonia suffruticosa(Moutan Cortex Radicis) on inflammatory response in activated macrophages. Methods : RAW264.7 cells were incubated with different concentrations of methyl gallate of Paeonia suffruticosa for 30 min and then stimulated with or without LPS at indicated times. Cell toxicity was determined by MTT assay. The concentrations of nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$) and inflammatory cytokines (TNF-$\alpha$, IL-6) were measured in culture medium by Griess assay, enzyme-immuno assay, and ELISA, respectively. The expressions of iNOS, COX-2 and cytokine mRNA and protein were determined by RT-PCR and Western blot, respectively. The $I{\kappa}-B{\alpha}$ degradation in cytosol and NF-${\kappa}B$ p65 translocation into nuclear of the cells were determined by Western blot. Results : Methyl gallate was significantly inhibited LPS-induced production of NO and PGE2 in RAW264.7 cells. Methyl gallate was also suppressed LPS-induced expression of iNOS and COX-2 mRNA and protein in the cells. Methyl gallate was inhibited LPS-induced production of TNF-$\alpha$ and IL-6 via suppression of their mRNA expressions. Methyl gallate blocked the NF-${\kappa}B$ pathway in LPS-stimulated RAW264.7 cells. Conclusions : This study suggests that methyl gallate of Paeonia suffruticosa may have an antiinflammatory property through suppressing inflammatory mediator production in activated macrophages.

Immunotherapy with methyl gallate, an inhibitor of Treg cell migration, enhances the anti-cancer effect of cisplatin therapy

  • Kim, Hyunseong;Lee, Gihyun;Sohn, Sung-Hwa;Lee, Chanju;Kwak, Jung Won;Bae, Hyunsu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.3
    • /
    • pp.261-268
    • /
    • 2016
  • $Foxp3^+$ $CD25^+CD4^+$ regulatory T (Treg) cells are crucial for the maintenance of immunological self-tolerance and are abundant in tumors. Most of these cells are chemo-attracted to tumor tissues and suppress anti-tumor responses inside the tumor. Currently, several cancer immunotherapies targeting Treg cells are being clinically tested. Cisplatin is one of the most potent chemotherapy drugs widely used for cancer treatment. While cisplatin is a powerful drug for the treatment of multiple cancers, there are obstacles that limit its use, such as renal dysfunction and the development of cisplatin-resistant cancer cells after its use. To minimize these barriers, combinatorial therapies of cisplatin with other drugs have been developed and have proven to be more effective to treat cancer. In the present study, we evaluated the effect of the combination therapy using methyl gallate with cisplatin in EL4 murine lymphoma bearing C57BL/6 mice. The combinatorial therapy of methyl gallate and cisplatin showed stronger anti-cancer effects than methyl gallate or cisplatin as single treatments. In Treg cell-depleted mice, however, the effect of methyl gallate vanished. It was found that methyl gallate treatment inhibited Treg cell migration into the tumor regardless of cisplatin treatment. Additionally, in both the normal and cisplatin-treated tumor-bearing mice, there was no renal toxicity attributed to methyl gallate treatment. These findings suggest that methyl gallate treatment could be useful as an adjuvant method accompanied with cisplatin therapy.

Phenolic Compounds from the Bark of Acer barbinerve Max.

  • Kwon, Dong-Joo;Bae, Young-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.164-170
    • /
    • 2009
  • The bark of Acer barbinerve was extracted with 70% aqueous acetone and the organic extracts were concentrated to small volume using rotary evaporator and then fractionated successively with n-hexane, dichloromethane, ethyl acetate and water. The chromatographic separation of ethyl acetate soluble fraction led to the isolation of five phenolic compounds. By means of spectroscopic method, the structures of these compounds were identified to methyl gallate (1), methyl gallate-4-O-${\beta}$-D-glucose (2), (+)-catechin (3), (-)-epicatechin (4) and (-)-epicatechin-3-O-gallate (5). These compounds (1-5) have not been reported in this plant yet.

Antioxidative Constituents from Paeonia lactiflora

  • Lee, Seung-Chul;Kwon, Yong-Soo;Son, Kyung-Hun;Kim, Hyun-Pyo;Heo, Moon-Young
    • Archives of Pharmacal Research
    • /
    • v.28 no.7
    • /
    • pp.775-783
    • /
    • 2005
  • The ethanol extract of the peony root (Paeonia Lactiflora Pall, Paeoniaceae) as well as its major active components including gallic acid and methyl gallate were evaluated for their protective effects against free radical generation and lipid peroxidation. In addition, the protective effects against hydrogen peroxide-induced oxidative DNA damage in a mammalian cell line were examined. The ethanol extracts of the peony root (PREs) and its active constituents, gallic acid and methyl gallate, exhibited a significant free radical scavenging effect against 1,1-diphenyl-2-picryl hydrazine (DPPH) radical generation and had an inhibitory effect on lipid peroxidation, as measured by the level of malondialdehyde (MDA) formation. The PREs did not have any pro-oxidant effect. They strongly inhibited the hydrogen peroxide-induced DNA damage from NIH/3T3 fibroblasts, as assessed by single cell gel electrophoresis. Furthermore, the oral administration of 50% PRE (50% ethanol extract of peony root), gallic acid and methyl gallate potently inhibited the formation of micronucleated reticulocytes (MNRET) in the mouse peripheral blood induced by a $KBrO_3$ treatment in vivo. Therefore, PREs containing gallic acid and methyl gallate may be a useful antigenotoxic antioxidant by scavenging free radicals, inhibiting lipid peroxidation and protecting against oxidative DNA damage without exhibiting any pro-oxidant effect.

Change of Medicinal Components by Different Species, Plant Parts and Growth Stage of Paeonia spp. (작약의 종(種), 부위 및 생육시기에 따른 성분 함량의 변화)

  • Kim Se-Jong;Park Jun-Hong;Kim Kil-Ung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.3
    • /
    • pp.215-219
    • /
    • 2006
  • This study was conducted to find to change of component by different species, plant parts and growth stage of Paeonia lactiflora Pallas Among the species of peony, the contents of compounds was higher in cultivated peony (P. lactiflora P.) as compared with wild peony (P. japonica M., P. obobata M., P. anomala L.). Amount of methyl gallate was highest in 0.45% at Euisung jakyak. Amount of compounds in peony was the highest in 1.0% at paeoniflorin, followed by methyl gallate, astragalin and kaempferol in order. Contents of compounds with different growth stage were observed highest in April, and showed decreased trend in the later growth stage. Methyl gallate was present in 1.79% at petal, 0.56% at leaf and 0.01% at root, astragalin present at 0.27% at petal, 0.20% at leaf and 0.03% at root, and paeoniflorin present at 0.43% at petal, 1.09% at leaf and 2.52% at root.

Isolation and Identification of Antimicrobial Substance from Canavalia gladiata

  • Lee, Hang-Young;Jeong, Heon-Sang
    • Food Science and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.268-274
    • /
    • 2005
  • Novel antimicrobial substance was isolated from seed coat of Canavalia gladiata by extraction with 75% methanol. Isolation and purification were conducted with solvent fractionation and chromatography on silica gel and sephadex LH-20 columns. Each fraction of antimicrobial activity was tested by paper disc method. Single compound was obtained from the 4th fraction of sephadex LH-20 column chromatography using chloroform/methanol (1:4, v/v), and identified as 3,4,5-trihydroxybenzoic acid methyl ester (methyl gallate) based on HPLC, GC/MS, FT-IR, $^1H$ NMR, and $^{13}C$ NMR analyses. This is the first report describing the presence of methyl gallate in C. gladiata.

Antioxidative activity of peony root

  • Lee, Seung-Chul;Kwon, Yong-Soo;Kim, Hyun-Pyo;Heo, Moon-Young
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.61-61
    • /
    • 2003
  • The ethanol extract of peony root (Paeonia Lactiflora Pall, Paeoniaceae) and its major active components including gallic acid and methyl gallate were evaluated for their protective effects against free radical generation and lipid peroxidation. And protective effects against hydrogen peroxide-induced oxidative DNA damage in a mammalian cell line were performed. The ethanol extract of peony root (PRE), gallic acid and methyl gallate were shown to possess the significant free radical scavenging effect against 1,1-diphenyl-2-picryl hydrazine (DPPH) radical generation and were revealed the inhibitory effect of lipid peroxidation as expressed by malondialdehyde (MDA) formation. They were also found to strongly inhibit hydrogen peroxide-induced DNA damage from NIH/3T3 fibroblasts, assessed by single cell gel electrophoresis. Furthermore, oral administration of 50% PRE (50% ethanol extract), gallic acid and methyl gallate potently inhibited micronucleated reticulocyte (MNRET) formation of mouse peripheral blood induced by KBrO3 treatment in vivo. Therefore, PRE containing gallic acid and methyl gallate may be a useful natural antioxidant by scavenging free radicals, inhibition of lipid peroxidation and protecting oxidative DNA damage.

  • PDF

Effects of the Constituents of Paeonia lactiflora Root on Arachidonate and NO Metabolism

  • Choi, Yong-Hwan;Gu, Lianyu;Kim, Yeong-Shik;Kang, Sam-Sik;Kim, Ju-Sun;Yean, Min-Hye;Kim, Hyun-Pyo
    • Biomolecules & Therapeutics
    • /
    • v.14 no.4
    • /
    • pp.216-219
    • /
    • 2006
  • In order to establish the anti-inflammatory cellular mechanism of the paeony root(Paeonia lactiflora, Pall, Paeoniaceae), the constituents including paeoniflorin, albiflorin, (+)-catechin, paeonol, benzoic acid and methyl gallate were evaluated for their effects on arachidonate and NO metabolism. Among the compounds tested, only paeonol weakly inhibited cyclooxygenase-2-mediated $PGE_2$ production from LPS-treated RAW 264.7 cells. (+)-Catechin and methyl gallate weakly inhibited inducible nitric oxide synthase-mediated NO production from the same cell line. In particular, methyl gallate significantly inhibited 5-lipoxygenase from RBL-l cells with an $IC_{50}$ of 8.4 ${\mu}M$. These results suggest that the inhibition of these components on arachidonate and NO metabolism may contribute at least in part to anti-inflammatory mechanism of the paeony root.

Optophysical Properties of Hydrogel Ophthalmic Lenses Containing Gallate Group (Gallate group이 포함된 친수성 안의료용 렌즈의 광물리적 특성)

  • Park, Se-Young;Sung, A-Young
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.6
    • /
    • pp.725-730
    • /
    • 2012
  • HEMA (2-hydroxyethyl methacrylate), EGDMA (ethylene glycol dimethacrylate; cross-linker), MMA (methyl methacrylate) and AA (acrylic acid) were copolymerized with ethyl gallate and propyl gallate as additives in the presence of AIBN (2,2'-azobisisobutyronitrile; initiator). The measurement of physical properties of the produced copolymers exhibited that refractive index, water content, visible transmittance, tensile strength, and contact angle were in the range of 1.433-1.435, 38.71-38.99%, 85.4-88.8%, 0.2468-0.2740 kgf and $49.77-36.29^{\circ}$, respectively. The transmittances of the copolymers were measured to be in the range of 49.0-7.4% and 71.0-43.4% for UV-B and UV-A, respectively, indicating that the copolymers have UV-blocking effect. The produced copolymers containing ethyl gallate and propyl gallate satisfied the basic physical properties required for the fabrication of hydrogel contact lenses. The copolymers showed an increase of wettability and UV-blocking effects while having no significant change in water content compared to the gallate-free copolymers.