• Title/Summary/Keyword: methylsilsesquioxane

Search Result 6, Processing Time 0.019 seconds

Laser bonding using liquid glass (유리액를 이용한 레이저 선택 접합)

  • Kim, Joo-Han;Lee, Jae-Hoon;Kim, Hyang-Tae
    • Laser Solutions
    • /
    • v.11 no.3
    • /
    • pp.1-4
    • /
    • 2008
  • A selective laser micro bonding process using liquid glass (methylsilsesquioxane) was developed and the results are analysed. The liquid glass can be solidified with Nd:YAG laser irradiation and it can be applied for joining two glass substrates. A bonding thickness of a few micrometers can be achieved. The appropriate laser power density (or this process is around 40-60 $kW/cm^2$ and its bonding force is 1000-1200 $gf/mm^2$. This process can be applied for bonding micro devices such as micro bio-sensors or display products. Its advantages and limitations are presented and discussed.

  • PDF

Low Hydroxyl Erbium-Doped and Undoped Gels

  • Yuh, Soon-Ku;Park, Sung-Soon;John D. Mackenzie
    • The Korean Journal of Ceramics
    • /
    • v.1 no.3
    • /
    • pp.152-154
    • /
    • 1995
  • A non-hydrolytic sol-gel process was developed to fabricate low-hydroxyl hard gels. The reaction of tert-butyl alcohol with silicon halides provided transparent low-hydroxyl hard gels. Some properties such as transparency, density, and refractive index was successfully doped into the hard gel matrices. The absorption spectrum of an erbium-doped methylsilsesquioxane was investigated to decide the pumping wavelength of an argon laser. The luminescence of the erbium-doped gel at 664 nm seems to be due to $4^F{9/2}\to 4^I_{15/2}$ transition.

  • PDF

Low dielectric material etching technology for Cu interconnection (Plasma를 이용한 구리배선용 저유전 물질의 etching에 대한 연구)

  • Lee, Kil-Hun;Jung, Do-Hyun;Choi, Jong-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.519-521
    • /
    • 2000
  • The application of low dieletric constant material instead of $SiO_2$ has been considered to reduce interconnection delay, crosstalk, power exhaustion. Methylsilsesquioxane (MSSQ) have a dieletric constant less than k>3 which is lower than that for the convention $SiO_2$ insulator ($k{\sim}4$). The Propose of this study is to know etching rate of MSSQ. Expermentation in this paper use RIE(Reactive ion Etching) and centre) flow rate of $CF_4/O_2$ gas, RF power.

  • PDF

Reactive Ion Etching Process of Low-K Methylsisesquioxane Insulator Film (저유전율 물질인 Methylsilsesquioxane의 반응 이온 식각 공정)

  • 정도현;이용수;이길헌;김대엽;김광훈;이희우;최종선
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.173-176
    • /
    • 1999
  • Continuing improvement of microprocessor performance involves in the devece size. This allow greater device speed, an increase in device packing density, and an increase in the number of functions that can reside on a single chip. However this has led to propagation delay, crosstalk noise, and power dissipation due to resistance-capacitance(RC) coupling become significant due to increased wiring capacitance, especially interline capacitance between the metal lines on the same metal level. Becase of pattering MSSQ (Methylsilsequioxane), we use RIE(Reactive ton Etching) which is a good anisotrgpy. In this study, according as we control a flow rate of CF$_4$/O$_2$ gas, RF power, we analysis by using ${\alpha}$ -step, SEM and AFM,

  • PDF

A Study on Wafer-Level 3D Integration Including Wafer Bonding using Low-k Polymeric Adhesive (저유전체 고분자 접착 물질을 이용한 웨이퍼 본딩을 포함하는 웨이퍼 레벨 3차원 집적회로 구현에 관한 연구)

  • Kwon, Yongchai;Seok, Jongwon;Lu, Jian-Qiang;Cale, Timothy;Gutmann, Ronald
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.466-472
    • /
    • 2007
  • A technology platform for wafer-level three-dimensional integration circuits (3D-ICs) is presented, and that uses wafer bonding with low-k polymeric adhesives and Cu damascene inter-wafer interconnects. In this work, one of such technical platforms is explained and characterized using a test vehicle of inter-wafer 3D via-chain structures. Electrical and mechanical characterizations of the structure are performed using continuously connected 3D via-chains. Evaluation results of the wafer bonding, which is a necessary process for stacking the wafers and uses low-k dielectrics as polymeric adhesive, are also presented through the wafer bonding between a glass wafer and a silicon wafer. After wafer bonding, three evaluations are conducted; (1) the fraction of bonded area is measured through the optical inspection, (2) the qualitative bond strength test to inspect the separation of the bonded wafers is taken by a razor blade, and (3) the quantitative bond strength is measured by a four point bending. To date, benzocyclobutene (BCB), $Flare^{TM}$, methylsilsesquioxane (MSSQ) and parylene-N were considered as bonding adhesives. Of the candidates, BCB and $Flare^{TM}$ were determined as adhesives after screening tests. By comparing BCB and $Flare^{TM}$, it was deduced that BCB is better as a baseline adhesive. It was because although wafer pairs bonded using $Flare^{TM}$ has a higher bond strength than those using BCB, wafer pairs bonded using BCB is still higher than that at the interface between Cu and porous low-k interlevel dielectrics (ILD), indicating almost 100% of bonded area routinely.