• Title/Summary/Keyword: micro-droplet test

Search Result 19, Processing Time 0.025 seconds

Analysis of Interfacial Shear Strength of Fiber/Epoxy Composites by Microbond Test and Finite Element Method (미소접합시험과 유한요소법을 통한 섬유/에폭시 복합재의 계면 전단강도 해석)

  • Kang, Soo-Keun;Lee, Deok-Bo;Choi, Nak-Sam
    • Composites Research
    • /
    • v.19 no.4
    • /
    • pp.7-14
    • /
    • 2006
  • Interfacial shear strength between epoxy and carbon fiber has been analyzed utilizing the microbond specimen with an epoxy micro-droplet adhered onto single carbon fiber. The interfacial shear stress distributions along the fiber/matrix interface were calculated by finite element analysis using three kinds of finite element models such as droplet model, circular-crosssection model and pull-out model. Conclusions were obtained as follows. (1) Interfacial shear stress distribution showed that larger stresses were concentrated in the fiber/matrix interface for microbond test than for pull-out test. Thus, debonding at the fiber/matrix interface during microbond test was liable to occur at low load level. (2) Microbond test showed higher interfacial strength which was caused by various effects of micro-droplet geometry and size as well as stress concentration in the region contacting with the micro-vise tip.

Molten Metal Inkjet System (용융 메탈 잉크젯 시스템)

  • Lee Taik-Min;Kang Tae-Goo;Yang Jeong-Soon;Jo Jeong-Dai;Kim Kwang-Young;Kim Dong-Soo
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.585-586
    • /
    • 2006
  • In this paper, we present a design, analysis, fabrication and performance test of the novel DoD metal-jet system for application to the high-density and high-temperature-melting materials. Based on the theoretical analysis, we design the metal-jet print head system and fabricate the metal-jet system, which can eject the droplet of lead-free metal solder in the high-temperature. In the experimental test, we set up the test apparatus for visualization of the droplet ejection and measure the Ejected droplet volume and velocity. As a result, the diameter, volume and the velocity of the ejected droplet are about $65-70{\mu}m$, 145-180 pl and 4m/sec. We also fabricate vertical and inclined 3D micro column structures using the present molten metal inkjet system. The measured geometries of the micro column structures are about height of $2,100{\mu}m$, diameter of $200{\mu}m$ and aspect ratio of 10.5 for vertical micro column and $1,400{\mu}m$ of height and $150{\mu}m$ of diameter for $65^{\circ}$-inclined micro column, respectively.

  • PDF

The Experimental Study on Mist Cooling Heat Transfer (초음파진동을 이용한 미세분무냉각 열전달에 관한 실험적 연구)

  • Kim, Yeung-Chan
    • Journal of ILASS-Korea
    • /
    • v.15 no.4
    • /
    • pp.202-207
    • /
    • 2010
  • Mist cooling is widely employed as a cooling technique of high temperature surfaces, and it has heat transfer characteristics similar to boiling heat transfer which has the convection, nucleate and film boiling regions. In the present study, mist cooling heat transfer was experimentally investigated for the mist flow impacting on the heated surfaces of mico-fins. The mist flow was generated by supersonic vibration. Experiments were conducted under the test conditions of droplet flow rate, $Q=6.02{\times}10^{-9}{\sim}3.47{\times}10^{-8}\;m^3/s$ and liquid temperature, $T_f=30{\sim}35^{\circ}C$. From the experimental results, it is found that an increase in the droplet flow rate improves mist cooling heat transfer in the both case of smooth surface and surfaces of micro-fins. Micro-fins surfaces enhance the mist cooling heat transfer. Besides, the experimental results show that an increase in the droplet flow rate decrease the heat transfer efficiency of mist cooling.

Experimental investigation of growth and transport behavior of single water droplet in a simplified channel of PEM fuel cell (PEM 연료전지의 단순화된 공기극 채널 내 단일 물방울의 성장 및 이동 특성에 대한 실험적 연구)

  • Kim, Bok-Yung;Kim, Han-Sang;Min, Young-Doug
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.81-84
    • /
    • 2006
  • To investigate the characteristics of water droplet on the gas diffusion layer from both upper-view and side-view of flow channel, a rig test apparatus was designed and fabricated with L-shape acryl plate in a $1mm{\times}1mm$ micro-channel. This experimental device is used to simulate the single droplet growth and its transport process under fuel cell operating condition. As a first step, we investigated the growth and transport of single water droplet with working temperature and air flow velocity. The contact angle and its hysteresis of water droplet at departing moment are measured and analyzed. It is expected that this study can provide the basic understanding of liquid water droplet behavior in gas flow channel and GDL interface during the PEM fuel cell operation.

  • PDF

An Experimental Study of the Micro Turbojet Engine Fuel Injection System

  • Choi, Hyun-Kyung;Choi, Seong-Man;Lee, Dong-Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.1-5
    • /
    • 2008
  • An experimental study was performed to develop the rotational fuel injection system of the micro turbojet engine. In this system, fuel is sprayed by centrifugal forces of engine shaft. The test rig was designed and manufactured to get droplet information on combustion space. This experimental apparatus consist of a high speed rotational device(Air-Spindle), fuel feeder, rotational fuel injector and acrylic case. To understand spray characteristics, spray droplet size, velocity and distribution were measured by PDPA (Phase Doppler Particle Analyzer) and spray was visualized by using Nd-Yag laser-based flash photography. From the test results, the length of liquid column from injection orifice is controlled by the rotational speeds and Sauter Mean Diameter(SMD) is decreased with rotational speed. Also, Sauter Mean Diameter is increased as increasing mass flow rate at same rotational speeds.

  • PDF

Investigation of Vortical Flow Field Visualization by Micro Water Droplet and Laser Beam Sheet (미세수적과 레이저 평면광에 의한 와류장의 가시화 연구)

  • 이기영;손명환
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.1
    • /
    • pp.55-62
    • /
    • 2002
  • A new off-surface visualization method of using the micro water droplet and laser beam sheet was presented. About a size of 5 to TEX>$10\mu\textrm{m}$ micro water droplet could be made from home-style ultrasonic humidifier, A 3 W Argon ion laser and cylindrical lens were used to generate a laser beam sheet, which interrogate specific cross section of the vortical flow field. Application of this new visualization method was conducted in KAFA small-sized low speed wind tunnel of having the test section of 0TEX>$0.9 m(W){\times}$0.9 m(H){\times}2.1 m(L)$$$. Visualization results show this method relatively easy and safe flow visualization method for wind tunnel testing. Moreover, this method is also make up for the disadvantage of smoke visualization, and can be applied to higher flow velocity range than that of smoke visualization.

Effect of Diffusion on the Adhesion Behavior of Polymer Coated Carbon Fibers with Vinyl Ester Resins (계면확산에 의한 고분자 코팅된 탄소섬유의 계면접착력 변화 연구)

  • T. H. Yoon;H. M. Kang
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.32-35
    • /
    • 1999
  • Poly(arylene ether phosphin oxide) (PEPO), Udel$^{\circledR}$ P-1700, Ultem$^{\circledR}$ 1000. poly(hydroxy ether) (PHE), carboxy modified poly(hydroxy ether)(C-PHE) and poly(hydroxy ether ethanol amine) (PHEA) were utilized for a coating of carbon fibers. Interfacial shear strength(IFSS) of polymers to carbon fibers was also evaluated in order to understand the adhesion mechanism. IFSS was measured via micro-droplet tests, and failure surfaces were analyzed by SEM. Diffusion between polymer and vinyl ester resin was investigated as a function of styrene content; 33. 40 or 50wt.% and the solubility parameters of polymers were calculated. The results were correlated to the interfacial shear strength. The highly enhanced interfacial shear strength (IFSS) was obtained with PEPO coating, and marginally improved IFSS with PHE, Udel$^{\circledR}$ and C-PHE coatings, but no improvement with PHEA and Ultem$^{\circledR}$ coatings.

  • PDF

Applications of Micro-Droplet Cell to Study of Localized Corrosion Resistance of Stainless Steels (스테인리스강의 국부부식 저항성 연구에 미세방울셀의 응용)

  • Kim Sung-Yu;Kim Hee-San
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.2
    • /
    • pp.70-76
    • /
    • 2006
  • Micro-droplet cell with free droplet as a micro-electrochemical technique has been limited to apply to electrochemical systems with high wetting properties such as an acidic solution and low grade stainless steels(Type 316L). By loading negative pressure to a droplet, control of droplet size, and use of hydrophobic gasket, the cell is modified to be allowed to use for electrochemical systems with high wetting properties. For giving the reliability of new cell, studies on local corrosion were conducted for three different systems-an acidic chloride solution and high chromium ferritic stainless steel, the other acidic chloride solution and type 316, and a neutral chloride solution and type 316. stainless steel. Firstly, the modified micro-droplet cell allows the anodic polarization curves in an acidic chloride solution to show the fact that the local corrosion of high chromium stainless steel near the $\alpha/\sigma$ interface is due to the Cr depleted zone. Secondly, the local anodic polarization test of type 316 L in the other acidic chloride solution can be successfully conducted in the cell. Furthermore, the local polarization curves help elucidating the corrosion of type 316 with $\delta-ferrite$ phase. Finally, the polarization curves of type 316 L in a neutral chloride solution indicates that the factor affecting the pitting corrosion resistance was inclusions rather than $\delta-ferrite$.

Experimental study of spreading phenomena on hydrophilic micro-textured surfaces depending on surface geometrical features (친수성 마이크로 기둥 구조 표면에서의 표면 지형적 특성에 따른 퍼짐성 현상에 대한 실험적 연구)

  • Jang, Munyoung;Park, Sehyeon;Yu, Dong In
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.3
    • /
    • pp.35-39
    • /
    • 2018
  • In multiphase systems, surface wettability is one of dominant design parameters to enhance system performance. Since surface wettability can be maximized and minimized with micro-textured surfaces, therefore micro-textured surfaces are widely countered in various research and engineering fields. In this study, for better understanding of micrometer scaled surface wettability, spreading phenomena is experimentally investigated on the hydrophilic micro-textured surfaces. By photolithography and conventional dry etching method, there are prepared the surfaces with uniformly arrayed micro-pillars. The interfacial motions of a water droplet on the test sections are visualized by high speed camera in top view. On the basis of visualization data, it is analyzed the relation between dynamic coefficient and geometrical features on micro-textured surfaces.

TRIGGERING AND ENERGETICS OF A SINGLE DROP VAPOR EXPLOSION: THE ROLE OF ENTRAPPED NON-CONDENSABLE GASES

  • Hansson, Roberta Concilio
    • Nuclear Engineering and Technology
    • /
    • v.41 no.9
    • /
    • pp.1215-1222
    • /
    • 2009
  • The present work pertains to a research program to study Molten Fuel-Coolant Interactions (MFCI), which may occur in a nuclear power plant during a hypothetical severe accident. Dynamics of the hot liquid (melt) droplet and the volatile liquid (coolant) were investigated in the MISTEE (Micro-Interactions in Steam Explosion Experiments) facility by performing well-controlled, externally triggered, single-droplet experiments, using a high-speed visualization system with synchronized digital cinematography and continuous X-ray radiography. The current study is concerned with the MISTEE-NCG test campaign, in which a considerable amount of non-condensable gases (NCG) are present in the film that enfolds the molten droplet. The SHARP images for the MISTEE-NCG tests were analyzed and special attention was given to the morphology (aspect ratio) and dynamics of the air/ vapor bubble, as well as the melt drop preconditioning. Energetics of the vapor explosion (conversion ratio) were also evaluated. The MISTEE-NCG tests showed two main aspects when compared to the MISTEE test series (without entrapped air). First, analysis showed that the melt preconditioning still strongly depends on the coolant subcooling. Second, in respect to the energetics, the tests consistently showed a reduced conversion ratio compared to that of the MISTEE test series.