• Title/Summary/Keyword: microarray analysis

Search Result 880, Processing Time 0.026 seconds

Detecting survival related gene sets in microarray analysis (마이크로어레이 자료에서 생존과 유의한 관련이 있는 유전자집단 검색)

  • Lee, Sun-Ho;Lee, Kwang-Hyun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • When the microarray experiment developed, main interest was limited to detect differentially expressed genes associated with a phenotype of interest. However, as human diseases are thought to occur through the interactions of multiple genes within a same functional category, the unit of analysis of the microarray experiment expanded to the set of genes. For the phenotype of censored survival time, Gene Set Enrichment Analysis(GSEA), Global test and Wald type test are widely used. In this paper, we modified the Wald type test by adopting normal score transformation of gene expression values and developed a parametric test which requires much less computation than others. The proposed method is compared with other methods using a real data set of ovarian cancer and a simulation data set.

Overview of Cytogenetic Technologies (세포유전학 기술에 관한 고찰)

  • Kang, Ji-Un
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.4
    • /
    • pp.375-381
    • /
    • 2018
  • Cytogenetic analysis plays an important role in examinations of a variety of human disorders. Over the years, cytogenetic analysis has evolved to a great extent and become a part of routine laboratory testing; the analysis provides significant diagnostic and prognostic results for human diseases. Microarray in conjunction with molecular cytogenetics and conventional chromosome analysis has transformed the outcomes of clinical cytogenetics. The advantages of microarray technologies have become obvious to the medical and laboratory community involved in genetic diagnosis, resulting in greatly improved visualization and validation capabilities. This article reviews how the field is moving away from conventional cytogenetics towards molecular approaches for the identification of pathogenic genomic imbalances and discusses practical considerations for the routine implementation of these technologies in genetic diagnosis.

Detection of Biodegradative Genes in Oil Contaminated Soil Microbial Community by Oligonucleotide Microarray (Oligonucleotide Microarray를 이용한 유류 오염 토양 미생물 군집내 난분해성 화합물 분해 유전자의 검출)

  • Lee Jong-Kwang;Kim Hee;Lee Doo-Myoung;Lee Seok-Jae;Kim Moo-Hoon
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • The analysis of functional population and its dynamics on the environment is essential for understanding bioremediation in environment. Here, we report a method for oligonucleotide microarray for the monitoring of aliphatic and aromatic degradative genes. This microarray contained 15 unique and group-specific probes which were based on 100 known genes involved pathways in biodegradation. Hybridization specificity tests with pure cultures, strain Pseudomonas aeruginosa KCTC 1636 indicated that the designed probes on the arrays appeared to be specific to their corresponding target genes. It was found that the presence of 8 genes encoding alkane, naphthalene, biphenyl, pyrene (PAH ring-hydroxylating) degradation pathway could be detected in oil contaminated soil sample. Therefore, the findings of this study strongly suggest that oligonucleotide microarray is an effective diagnostic tool for evaluating biodegradation capability in oil contaminated subsurface environment.

Building a Classifier for Integrated Microarray Datasets through Two-Stage Approach (2 단계 접근법을 통한 통합 마이크로어레이 데이타의 분류기 생성)

  • Yoon, Young-Mi;Lee, Jong-Chan;Park, Sang-Hyun
    • Journal of KIISE:Databases
    • /
    • v.34 no.1
    • /
    • pp.46-58
    • /
    • 2007
  • Since microarray data acquire tens of thousands of gene expression values simultaneously, they could be very useful in identifying the phenotypes of diseases. However, the results of analyzing several microarray datasets which were independently carried out with the same biological objectives, could turn out to be different. One of the main reasons is attributable to the limited number of samples involved in one microarry experiment. In order to increase the classification accuracy, it is desirable to augment the sample size by integrating and maximizing the use of independently-conducted microarray datasets. In this paper, we propose a novel two-stage approach which firstly integrates individual microarray datasets to overcome the problem caused by limited number of samples, and identifies informative genes, secondly builds a classifier using only the informative genes. The classifier from large samples by integrating independent microarray datasets achieves high accuracy up to 24.19% increase as against other comparison methods, sensitivity, and specificity on independent test sample dataset.

Hypernetwork Classifiers for Microarray-Based miRNA Module Analysis (마이크로어레이 기반 miRNA 모듈 분석을 위한 하이퍼망 분류 기법)

  • Kim, Sun;Kim, Soo-Jin;Zhang, Byoung-Tak
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.6
    • /
    • pp.347-356
    • /
    • 2008
  • High-throughput microarray is one of the most popular tools in molecular biology, and various computational methods have been developed for the microarray data analysis. While the computational methods easily extract significant features, it suffers from inferring modules of multiple co-regulated genes. Hypernetworhs are motivated by biological networks, which handle all elements based on their combinatorial processes. Hence, the hypernetworks can naturally analyze the biological effects of gene combinations. In this paper, we introduce a hypernetwork classifier for microRNA (miRNA) profile analysis based on microarray data. The hypernetwork classifier uses miRNA pairs as elements, and an evolutionary learning is performed to model the microarray profiles. miTNA modules are easily extracted from the hypernetworks, and users can directly evaluate if the miRNA modules are significant. For experimental results, the hypernetwork classifier showed 91.46% accuracy for miRNA expression profiles on multiple human canters, which outperformed other machine learning methods. The hypernetwork-based analysis showed that our approach could find biologically significant miRNA modules.

Analysis of Key Genes and Pathways Associated with Colorectal Cancer with Microarray Technology

  • Liu, Yan-Jun;Zhang, Shu;Hou, Kang;Li, Yun-Tao;Liu, Zhan;Ren, Hai-Liang;Luo, Dan;Li, Shi-Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.1819-1823
    • /
    • 2013
  • Objective: Microarray data were analyzed to explore key genes and their functions in progression of colorectal cancer (CRC). Methods: Two microarray data sets were downloaded from Gene Expression Omnibus (GEO) database and differentially expressed genes (DEGs) were identified using corresponding packages of R. Functional enrichment analysis was performed with DAVID tools to uncover their biological functions. Results: 631 and 590 DEGs were obtained from the two data sets, respectively. A total of 32 common DEGs were then screened out with the rank product method. The significantly enriched GO terms included inflammatory response, response to wounding and response to drugs. Two interleukin-related domains were revealed in the domain analysis. KEGG pathway enrichment analysis showed that the PPAR signaling pathway and the renin-angiotensin system were enriched in the DEGs. Conclusions: Our study to systemically characterize gene expression changes in CRC with microarray technology revealed changes in a range of key genes, pathways and function modules. Their utility in diagnosis and treatment now require exploration.

Microarray Analysis of Differentially Expressed Genes between Cysts and Trophozoites of Acanthamoeba castellanii

  • Moon, Eun-Kyung;Xuan, Ying-Hua;Chung, Dong-Il;Hong, Yeon-Chul;Kong, Hyun-Hee
    • Parasites, Hosts and Diseases
    • /
    • v.49 no.4
    • /
    • pp.341-347
    • /
    • 2011
  • Acanthamoeba infection is difficult to treat because of the resistance property of Acanthamoeba cyst against the host immune system, diverse antibiotics, and therapeutic agents. To identify encystation mediating factors of Acanthamoeba, we compared the transcription profile between cysts and trophozoites using microarray analysis. The DNA chip was composed of 12,544 genes based on expressed sequence tag (EST) from an Acanthamoeba ESTs database (DB) constructed in our laboratory, genetic information of Acanthamoeba from TBest DB, and all of Acanthamoeba related genes registered in the NCBI. Microarray analysis indicated that 701 genes showed higher expression than 2 folds in cysts than in trophozoites, and 859 genes were less expressed in cysts than in trophozoites. The results of real-time PCR analysis of randomly selected 9 genes of which expression was increased during cyst formation were coincided well with the microarray results. Eukaryotic orthologous groups (KOG) analysis showed an increment in T article (signal transduction mechanisms) and O article (posttranslational modification, protein turnover, and chaperones) whereas significant decrement of C article (energy production and conversion) during cyst formation. Especially, cystein proteinases showed high expression changes (282 folds) with significant increases in real-time PCR, suggesting a pivotal role of this proteinase in the cyst formation of Acanthamoeba. The present study provides important clues for the identification and characterization of encystation mediating factors of Acanthamoeba.

Bayesian Survival Analysis of High-Dimensional Microarray Data for Mantle Cell Lymphoma Patients

  • Moslemi, Azam;Mahjub, Hossein;Saidijam, Massoud;Poorolajal, Jalal;Soltanian, Ali Reza
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.1
    • /
    • pp.95-100
    • /
    • 2016
  • Background: Survival time of lymphoma patients can be estimated with the help of microarray technology. In this study, with the use of iterative Bayesian Model Averaging (BMA) method, survival time of Mantle Cell Lymphoma patients (MCL) was estimated and in reference to the findings, patients were divided into two high-risk and low-risk groups. Materials and Methods: In this study, gene expression data of MCL patients were used in order to select a subset of genes for survival analysis with microarray data, using the iterative BMA method. To evaluate the performance of the method, patients were divided into high-risk and low-risk based on their scores. Performance prediction was investigated using the log-rank test. The bioconductor package "iterativeBMAsurv" was applied with R statistical software for classification and survival analysis. Results: In this study, 25 genes associated with survival for MCL patients were identified across 132 selected models. The maximum likelihood estimate coefficients of the selected genes and the posterior probabilities of the selected models were obtained from training data. Using this method, patients could be separated into high-risk and low-risk groups with high significance (p<0.001). Conclusions: The iterative BMA algorithm has high precision and ability for survival analysis. This method is capable of identifying a few predictive variables associated with survival, among many variables in a set of microarray data. Therefore, it can be used as a low-cost diagnostic tool in clinical research.

Toxicogenomic analysis of Effects of Bisphenol A on Japanese Medaka fish using high density-functional cDNA microarray

  • Jiho Min;Park, Kyeong-Seo;Hong, Han-Na;Gu, Man-Bock
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.10a
    • /
    • pp.173-173
    • /
    • 2003
  • With the introduction of DNA microarrays, a high throughput analysis of gene expression is now possible as a replacement to the traditional time-consuming Southern-blot analysis. This cDNA microarray should be ahighly favored technology in the area of molecular toxicology or analysis of environmental stresses.In this study, therefore, we developed a novel cDNA microarray for analyzing stress-specific responses in japanese Medaka fish. In the design and fabrication of this stress specific functional cDNA microarray, 123 different genes in Medaka fish were selected from eighteen different stress responsive groups and spotted on a 25${\times}$75 mm glass surface. After exposure of the fish to bisphenol A which is the one of the well-known endocrine disrupting chemicals (EDCs), over 1 or 10 days, the responses of the DNA chip were found to show distinct expression patterns according to the mode of toxic actions from environmental toxicants. As a results, they showed specific gene expression pattern to bisphenol A, additionally, the chemical spesific biomarkers could be suggested based on the chip analysis data. Therefore, this chip can be used to monitor stress responses of unknown and/or known toxic chemicals using Medaka fish and may be used for the further development of biomarkers by utilizing the gene expression patterns for known contaminants.

  • PDF

A note on Box-Cox transformation and application in microarray data

  • Rahman, Mezbahur;Lee, Nam-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.5
    • /
    • pp.967-976
    • /
    • 2011
  • The Box-Cox transformation is a well known family of power transformations that brings a set of data into agreement with the normality assumption of the residuals and hence the response variable of a postulated model in regression analysis. Normalization (studentization) of the regressors is a common practice in analyzing microarray data. Here, we implement Box-Cox transformation in normalizing regressors in microarray data. Pridictabilty of the model can be improved using data transformation compared to studentization.