• Title/Summary/Keyword: microcracking behavior

Search Result 25, Processing Time 0.03 seconds

Natural Element Analysis on Micro-cracking Behavior of Brittle Solids (취성 재료의 마이크로 크랙킹 거동에 관한 자연요소해석)

  • Kang, Sung-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.724-730
    • /
    • 2006
  • Fracture behavior of brittle solids is closely related to microcracking. A meso-scale analysis method using the natural element method is proposed for the analysis of brittle microcracking solids. The microcracking is assumed to occur along Voronoi edges in the Voronoi diagram generated using the nodal points as the generators. The mechanical effect of microcracks is considered by controlling the material constants in the neighborhood of the microcracks. The meso-analysis method is applied to the simulation of the microcracking behaviors of brittle solids subjected to tensile macrostress. The method is also applied to the analysis of the propagation of a macrocrack accompanied by the coalescence with microcracks formed near the macrocrack-tip.

Analysis of Microcracking Behaviors of Solids under Multiple-Loading Conditions (다양한 하중 상태에서의 마이크로 크랙킹 거동 해석)

  • Kang, Sung-Soo;Kim, Hong-Gun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.2
    • /
    • pp.23-29
    • /
    • 2007
  • Fracture behavior of brittle solids such as rocks, ceramics and concrete is closely related to microcracking. A meso-scale analysis method using the natural element method is proposed for the analysis of material damage of brittle microcracking solids. The microcracking is assumed to occur along Voronoi edges in the Voronoi diagram generated using the nodal points as the generators. The mechanical effect of microcracks is considered by controlling the material constants in the neighborhood of the microcracks. The proposed meso analysis method is applied to the simulation of the microcracking behaviors of brittle solids subjected to uniaxial and biaxial macrostress. The obtained results are in good agreement with the results by computational damage mechanics model. The validity of the proposed method has been demonstrated by these numerical examples.

Influence of pre-compression on crack propagation in steel fiber reinforced concrete

  • Abubakar, Abdulhameed U.;Akcaoglu, Tulin
    • Advances in concrete construction
    • /
    • v.11 no.3
    • /
    • pp.261-270
    • /
    • 2021
  • In this study, a new understanding is presented on the microcracking behavior of high strength concrete (HSC) with steel fiber addition having prior compressive loading history. Microcracking behavior at critical stress (σcr) region, using seven fiber addition volume of 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, and 2.0% was evaluated, at two aspect ratios (60 and 75). The specimens were loaded up to a specified compressive stress levels (0.70fc-0.96fc), and subsequently subjected to split tensile tests. This was followed by microscopic analyses afterwards. Four compressive stress levels as percentage of fc were selected according to the linearity end point based on stress-time (σ-t) diagram under uniaxial compression. It was seen that pre-compression has an effect on the linearity end point as well as fiber addition where it lies within 85-91% of fc. Tensile strength gain was observed in some cases with respect to the 'maiden' tensile strength as oppose to tensile strength loss due to the fiber addition with teething effect. Aggregate cracking was the dominant failure mode instead of bond cracks due to improved matrix quality. The presence of the steel fiber improved the extensive failure pattern of cracks where it changes from 'macrocracks' to a branched network of microcracks especially at higher fiber dosages. The applied pre-compression resulted in hardening effect, but the cracking process is similar to that in concrete without fiber addition.

Thermal Shock Behavior of Barium Titanate Ceramics

  • Jae Yeon Kim;Young Wook Kim;Kyeong Sik Cho;June Gunn Lee
    • The Korean Journal of Ceramics
    • /
    • v.3 no.3
    • /
    • pp.195-198
    • /
    • 1997
  • Post-firing process of electronic ceramic, such as electroding and encapsultion with resin, often causes damage by thermal shock. The thermal shock behavior of $BaTiO_3$ ceramics was investigated by the down-quench test, where the relative strength retained is determined after the sample is quenched from an elevated temperature into a fixed temperature bath. The critical temperature drop, $\DeltaTc$, was evaluated for three kinds of sintered $BaTiO_3$ ceramics, which were formed by extrustioin, uniaxial pressing using granules, and uniaxial pressing using powders. A drastic loss in strength caused by microcracking was observed for the specimens quenched with $\DeltaT\geq150^{\circ}C$. This concentp can be adopted as a method of the quality control by monitoring the sudden drop of the strength of capacitor products after each exposure to heat.

  • PDF

Evaluation of Fracture Behavior and Formation of Microcrack of Alumina Ceramics by Acoustic Emission (AE에 의한 알루미나 세라믹스의 Microcrack 생성과 파괴거동의 평가)

  • 장병국;우상국
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.6
    • /
    • pp.551-558
    • /
    • 1998
  • Detection of microcrack in {{{{ {Al }_{2 } {O }_{3 } }} ceramics were studided by AE(acoustic emission) technique with 4-point bending test in order to evaluate the fracture process and formation of microcrack. Fully-dense alu-mina ceramics having a different grain size were fabricated by varing the hot-pressing temperature. The grain size of alumina increased with increasing the hot-pressing temperature whereas the bending strength decreasd. The microcracks were observed by SEM and TEM. The generation of AE event increased with increasing the applied load and many AE event was generated at maximum applied load. Alumina with smaller grain size shows the generation of many AE event resulting in an increase of microcrack formation. An intergranular fracture is predominantly observed in fine-grained alumina whereas intragranular fracture occurs predominantly in coarse-grained alumina,. Analysis of micorstructure and AE prove that primary mi-crocracks occur within grain-boundaries of alumina. The larger microcracking were formed by the growth and/or coalesence of primary microcracks. Then the materials become to fracuture by main crack gen-eration at the maximum applied load.

  • PDF

FE analysis of RC structures using DSC model with yield surfaces for tension and compression

  • Akhaveissy, A.H.;Desai, C.S.;Mostofinejad, D.;Vafai, A.
    • Computers and Concrete
    • /
    • v.11 no.2
    • /
    • pp.123-148
    • /
    • 2013
  • The nonlinear finite element method with eight noded isoparametric quadrilateral element for concrete and two noded element for reinforcement is used for the prediction of the behavior of reinforcement concrete structures. The disturbed state concept (DSC) including the hierarchical single surface (HISS) plasticity model with associated flow rule with modifications is used to characterize the constitutive behavior of concrete both in compression and in tension which is named DSC/HISS-CT. The HISS model is applied to shows the plastic behavior of concrete, and DSC for microcracking, fracture and softening simulations of concrete. It should be noted that the DSC expresses the behavior of a material element as a mixture of two interacting components and can include both softening and stiffening, while the classical damage approach assumes that cracks (damage) induced in a material treated acts as a void, with no strength. The DSC/HISS-CT is a unified model with different mechanism, which expresses the observed behavior in terms of interacting behavior of components; thus the mechanism in the DSC is much different than that of the damage model, which is based on physical cracks which has no strength and interaction with the undamaged part. This is the first time the DSC/HISS-CT model, with the capacity to account for both compression and tension yields, is applied for concrete materials. The DSC model allows also for the characterization of non-associative behavior through the use of disturbance. Elastic perfectly plastic behavior is assumed for modeling of steel reinforcement. The DSC model is validated at two levels: (1) specimen and (2) practical boundary value problem. For the specimen level, the predictions are obtained by the integration of the incremental constitutive relations. The FE procedure with DSC/HISS-CT model is used to obtain predictions for practical boundary value problems. Based on the comparisons between DSC/HISS-CT predictions, test data and ANSYS software predictions, it is found that the model provides highly satisfactory predictions. The model allows computation of microcracking during deformation leading to the fracture and failure; in the model, the critical disturbance, Dc, identifies fracture and failure.

R-Curve Behavior of Silicon Carbide-titanium Carbide Composites

  • An, Hyun-Gu;Kim, Young-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.12
    • /
    • pp.1075-1079
    • /
    • 2001
  • The R-curve for in situ-toughened SiC-30 wt% TiC composites was estimated by the indentation-strength method and compared to that of monolithic SiC with toughened microstructure. Both materials exhibited rising R-curve behavior. The SiC-TiC composites, however, displayed better damage tolerance and higher resistance to crack growth. Total volume fractions of SiC key grains, which take part in toughening mechanisms such as crack bridging and crack deflection, were 0.607 for monolithic SiC ceramics and 0.614 for SiC-TiC composites. From the microstructural characterization and the residual stress calculation, it was inferred that this superior performance of SiC-TiC composites can be attributed to stress-induced microcracking at heterophase (SiC/TiC) boundaries and some contribution from carck deflection by TiC grains.

  • PDF

Fracture Toughness and Crack Growth Resistance of the Fine Grain Isotropic Graphite

  • Kim, Dae-Jong;Oh, Seung-Jin;Jang, Chang-Heui;Kim, In-Sup;Chi, Se-Hwan
    • Carbon letters
    • /
    • v.7 no.1
    • /
    • pp.19-26
    • /
    • 2006
  • Three point bending tests of single edge notched beam (SENB) specimens were carried out to evaluate the fracture behavior of the fine-grain isotropic nuclear grade graphite, IG-11. To measure the crack initiation point and the subsequent crack growth, the direct current potential drop (DCPD) method and a traveling microscope were used. The effects of test variables like initial crack length, specimen thickness, notch type and loading rate on the measured fracture toughness, $K_Q$, were investigated. Based on the test results, the ranges of the test variables to measure the reliable fracture toughness value were proposed. During the crack growth, the rising R-curve behavior was observed in IG-11 graphite when the superficial crack length measured on the specimen surface was used. The increase of crack growth resistance was discussed in terms of crack bridging, crack meandering, crack branching, microcracking and crack deflection, which increase the surface energy and friction force.

  • PDF

Behavior on the wear and friction of sealing composite for ship machinery (선박기계용 실링 복합재료의 마모 및 마찰거동)

  • LEE, Jung-Kyu;KOH, Sung Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.2
    • /
    • pp.204-209
    • /
    • 2017
  • In order to use PUR/CuO Composites as the sealing materials for ships equipment, this research has been performed. PUR/CuO composites are produced by using ultrasonic waves. The increase of CuO leads to increase in the tensile strength and shore hardness. The cumulative wear volume shows a tendency to increase in proportional to sliding distance. As the CuO particles of these composites indicated, the friction coefficient was slightly increased. The major failure mechanisms were lapping layers, deformation of matrix, plowing, debonding of particles and microcracking by scanning electric microscopy photograph of the wear tested surface.

Modeling of unilateral effect in brittle materials by a mesoscopic scale approach

  • Pituba, Jose J.C.;Neto, Eduardo A. Souza
    • Computers and Concrete
    • /
    • v.15 no.5
    • /
    • pp.735-758
    • /
    • 2015
  • This work deals with unilateral effect of quasi-brittle materials, such as concrete. For this propose, a two-dimensional meso-scale model is presented. The material is considered as a three-phase material consisting of interface zone, matrix and inclusions - each constituent modeled by an appropriate constitutive model. The Representative Volume Element (RVE) consists of inclusions idealized as circular shapes randomly placed into the specimen. The interface zone is modeled by means of cohesive contact finite elements developed here in order to capture the effects of phase debonding and interface crack closure/opening. As an initial approximation, the inclusion is modeled as linear elastic as well as the matrix. Our main goal here is to show a computational homogenization-based approach as an alternative to complex macroscopic constitutive models for the mechanical behavior of the quasi-brittle materials using a finite element procedure within a purely kinematical multi-scale framework. A set of numerical examples, involving the microcracking processes, is provided. It illustrates the performance of the proposed model. In summary, the proposed homogenization-based model is found to be a suitable tool for the identification of macroscopic mechanical behavior of quasi-brittle materials dealing with unilateral effect.