• Title/Summary/Keyword: microstructure

Search Result 8,065, Processing Time 0.036 seconds

Nano-thick Nickel Silicide and Polycrystalline Silicon on Polyimide Substrate with Extremely Low Temperature Catalytic CVD (폴리이미드 기판에 극저온 Catalytic-CVD로 제조된 니켈실리사이드와 실리콘 나노박막)

  • Song, Ohsung;Choi, Yongyoon;Han, Jungjo;Kim, Gunil
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.4
    • /
    • pp.321-328
    • /
    • 2011
  • The 30 nm-thick Ni layers was deposited on a flexible polyimide substrate with an e-beam evaporation. Subsequently, we deposited a Si layer using a catalytic CVD (Cat-CVD) in a hydride amorphous silicon (${\alpha}$-Si:H) process of $T_{s}=180^{\circ}C$ with varying thicknesses of 55, 75, 145, and 220 nm. The sheet resistance, phase, degree of the crystallization, microstructure, composition, and surface roughness were measured by a four-point probe, HRXRD, micro-Raman spectroscopy, FE-SEM, TEM, AES, and SPM. We confirmed that our newly proposed Cat-CVD process simultaneously formed both NiSi and crystallized Si without additional annealing. The NiSi showed low sheet resistance of < $13{\Omega}$□, while carbon (C) diffused from the substrate led the resistance fluctuation with silicon deposition thickness. HRXRD and micro-Raman analysis also supported the existence of NiSi and crystallized (>66%) Si layers. TEM analysis showed uniform NiSi and silicon layers, and the thickness of the NiSi increased as Si deposition time increased. Based on the AES depth profiling, we confirmed that the carbon from the polyimide substrate diffused into the NiSi and Si layers during the Cat-CVD, which caused a pile-up of C at the interface. This carbon diffusion might lessen NiSi formation and increase the resistance of the NiSi.

Fabrication and Characterization of Cu-based Amorphous Coatings by Cold Spray Process (저온 분사를 이용한 Cu계 비정질 코팅층의 제조 및 특성 연구)

  • Jung, Dong-jin;Park, Dong-Yong;Lee, Jin Kyu;Kim, Hyung Jun;Lee, Kee-Ahn
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.5
    • /
    • pp.321-327
    • /
    • 2008
  • Cu based amorphous ($Cu_{54}Zr_{22}Ti_{18}Ni_6$) coating was produced by cold spraying as a new fabrication process. The microstructure and macroscopic properties of amorphous coating layer was investigated and compared with those of cold sprayed pure Cu coating. Amorphous powders were prepared by gas atomization and Al 6061 was used as the substrate plate. X-ray diffraction results showed that Cu based amorphous powder could be successfully deposited by cold spraying without any crystallization. The Cu based amorphous coating layer ($300{\sim}400{\mu}m$ thickness) contained 4.87% porosity. The hardness of Cu based amorphous coating represented $412.8H_v$, which was correspond to 68% of the hardness of injection casted bulk amorphous material. The wear resistance of Cu based amorphous coating was found to be three times higher than that of pure Cu coating. The 3-point bending test results showed that the adhesion strength of Cu based amorphous coating layer was higher than that pure Cu coating. It was also observed that hard Cu base amorphous particle could easily deform soft substrate by particle collisions and thus generated strong adhesion between coating and substrate. However, the amorphous coating layer unexpectedly represented lower corrosion resistance than pure Cu coating, which might be resulted from the higher content of porosity in the cold sprayed amorphous coating.

Thermodynamic Calculation and Observation of Microstructural Change in Ni-Mo-Cr High Strength Low Alloy RPV Steels with Alloying Elements (압력용기용 Ni-Mo-Cr계 고강도 저합금강의 합금원소 함량 변화에 따른 미세조직학적 특성변화의 열역학 계산 및 평가)

  • Park, Sang Gyu;Kim, Min-Chul;Lee, Bong-Sang;Wee, Dang-Moon
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.12
    • /
    • pp.771-779
    • /
    • 2008
  • An effective way of increasing the strength and fracture toughness of reactor pressure vessel steels is to change the material specification from that of Mn-Mo-Ni low alloy steel(SA508 Gr.3) to Ni-Mo-Cr low alloy steel(SA508 Gr.4N). In this study, we evaluate the effects of alloying elements on the microstructural characteristics of Ni-Mo-Cr low alloy steel. The changes in the stable phase of the SA508 Gr.4N low alloy steel with alloying elements were evaluated by means of a thermodynamic calculation conducted with the software ThermoCalc. The changes were then compared with the observed microstructural results. The calculation of Ni-Mo-Cr low alloy steels confirms that the ferrite formation temperature decreases as the Ni content increases because of the austenite stabilization effect. Consequently, in the microscopic observation, the lath martensitic structure becomes finer as the Ni content increases. However, Ni does not affect the carbide phases such as $M_{23}C_6 $ and $M_7C_3$. When the Cr content decreases, the carbide phases become unstable and carbide coarsening can be observed. With an increase in the Mo content, the $M_2C$ phase becomes stable instead of the $M_7C_3$ phase. This behavior is also observed in TEM. From the calculation results and the observation results of the microstructure, the thermodynamic calculation can be used to predict the precipitation behavior.

Microstructure and Mechanical Properties of Amorphous Matrix Composite Reinforced with Tungsten Porous Foam (텅스텐 다공성폼 강화 Zr계 비정질 기지 복합재료의 미세조직과 기계적 성질)

  • Son, Chang-Young;Lee, Sang-Bok;Lee, Sang-Kwan;Kim, Choongnyun Paul;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.2
    • /
    • pp.109-115
    • /
    • 2010
  • In the present study, a Zr-based amorphous alloy matrix composite reinforced with tungsten porous foam was fabricated without pores or defects by liquid pressing process, and its microstructures and mechanical properties were investigated. About 69 vol.% of tungsten foam was homogeneously distributed inside the amorphous matrix, although the matrix of the composite contained a small amount of crystalline phases. The compressive test results indicate that the composite was not fractured at one time after reaching the maximum compressive strength, but showed considerable plastic strain as the compressive load was sustained by tungsten foam. The tungsten foam greatly improved the strength (2764 MPa) and ductility (39.4%) of the composite by homogeneously dispersing the stress applied to the matrix. This was because the tungsten foam and matrix were simultaneously deformed without showing anisotropic deformation due to the excellent bonding of tungsten/matrix interfaces. These findings suggest that the liquid pressing process is useful for the development of amorphous matrix composites with improved strength and ductility.

Effects of Temperature and Stress Ratio on Low-Cycle Fatigue Crack Growth of G91 Steel (G91강 저주파 피로균열 성장에 미치는 온도와 응력비의 영향)

  • Kim, Jong Bum;Hwang, Soo-Kyung;Kim, Bum Joon;Lee, Jong Hoon;Park, Chang Gyu;Lee, Hyeong Yeon;Kim, Moon Ki;Lim, Byeong Soo
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.4
    • /
    • pp.271-279
    • /
    • 2012
  • 9-12% Cr steels have been used in thermal power plants which repeat start and stop operations. Major factors of fatigue life are temperature, frequency, stress ratio, holding time, microstructure, and environment. Normally, fatigue life decreases at high temperature, low frequency, high stress ratio, and long holding time conditions. A Mod.9Cr-1Mo steel, called G91, was developed at ORNL (Oak Ridge National Laboratory, USA) and was adopted as a high-temperature structural material in the ASME Code in 2004. However, its low-cycle fatigue and fatigue crack growth characteristics have been rarely studied. In this work, we have investigated the low-cycle fatigue crack growth behaviors of G91 steel under various test conditions in terms of temperature and stress ratio. As temperature and stress ratio increase, the crack growth rate becomes faster and striation distance also increases. On the other hand, the number of branch cracks decreases.

Microstructural and Mechanical Properties of Ta-bearing 9%Cr Ferritic/Martensitic Steels (탄탈륨 함유 9%Cr 페라이트/마르텐사이트 강의 미세조직 및 기계적 특성)

  • Baek, Jong-Hyuk;Han, Chang-Hee;Kim, Sung-Ho;Lee, Chan-Bock;Hahn, Dohee
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.4
    • /
    • pp.209-216
    • /
    • 2009
  • It was evaluated that the microstructural and mechanical properties of Ta-bearing 9Cr-0.5Mo-2W ferritic/martensitic experimental steels. All the experimental steels showed the tempered martensitic microstructures, and $M_{23}C_6$ carbides, whose sizes were ranged from 200 to 300 nm, were easily observed at both boundaries of the prior austenite grain and the martensite lath. In addition, a relatively large Nb-rich MX carbonitrides were intermittently detected at the prior austenite grain boundaries, whereas a lot of Vrich MX carbonitrides, whose mean diameter was less than 50 nm, were observed randomly at both boundaries. Ta was mainly incorporated into the V-rich MX carbonitrides rather than the Nb-rich ones and their content was spanned from 5 to 20 at.%. Ta contents within the MX precipitates also increased as the content of Ta increased. Because the Ta addition into the steels would be attributed to the precipitation strengthening, solid solution strengthening and lath width reduction, it was shown that the mechanical properties, including hardness, tensile strength and creep rate of the 9%Cr-0.5Mo-2W steels were improved by the increase of Ta content. Especially, 9Cr-0.5Mo-2W-0.3V-0.05Nb-0.14Ta steel was revealed to be relatively excellent in the application for the SFR fuel cladding.

Selective Surface Oxidation of 590MPa TRIP Steel and Its Effect on Hot-Dip Galvanizability (590 MPa TRIP강의 선택적 표면산화 거동과 표면 산화막이 도금특성에 미치는 영향)

  • Kim, Seong-Hwan;Im, Jun-Mo;Huh, Joo-Youl;Lee, Suk-Kyu;Park, Rho-Bum;Kim, Jong-Sang
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.4
    • /
    • pp.281-290
    • /
    • 2011
  • In order to gain better understanding of the selective surface oxidation and its influence on the galvanizability of a transformation-induced plasticity (TRIP) assisted steel containing 1.5 wt.% Si and 1.6 wt.% Mn, a model experiment has been carried out by depositing Si and Mn (each with a nominal thickness of 10 nm) in either monolayers or bilayers on a low-alloy interstitial-free (IF) steel sheet. After intercritical annealing at $800^{\circ}C$ in a $N_2$ ambient with a dew point of $-40^{\circ}C$, the surface scale formed on 590 MPa TRIP steel exhibited a microstructure similar to that of the scale formed on the Mn/Si bilayer-coated IF steel, consisting of $Mn_{2}SiO_{4}$ particles embedded in an amorphous $SiO_{2}$ film. The present study results indicated that, during the intercritical annealing process of 590 MPa TRIP steel, surface segregation of Si occurs first to form an amorphous $SiO_{2}$ film, which in turn accelerates the out-diffusion of Mn to form more stable Mn-Si oxide particles on the steel surface. During hot-dip galvanizing, particulate $Fe_{3}O_{4}$, MnO, and Si-Mn oxides were reduced more readily by Al in a Zn bath than the amorphous $SiO_{2}$ film. Therefore, in order to improve the galvanizability of 590 TRIP steel, it is most desirable to minimize the surface segregation of Si during the intercritical annealing process.

A Study on the Microstructure and Physical Properties of Cold Sprayed Cu/CNT Composite Coating (저온 분사 코팅법으로 제조된 Cu/CNT 복합 코팅층의 미세조직 및 물성 연구)

  • Kwon, Seong-Hee;Park, Dong-Yong;Lee, Dae-Yeol;Euh, Kwang-Jun;Lee, Kee-Ahn
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.3
    • /
    • pp.182-188
    • /
    • 2008
  • Carbon nanotubes(CNTs) have outstanding mechanical, thermal, and electrical properties. Thus, by placing nanotubes into appropriate matrix, it is postulated that the resulting composites will have enhanced properties. Cold spray can produce thick metal-based composite coatings with very high density, low oxygen content, and phase purity, which leads to excellent physical properties. In this study, we applied cold spray coating process for the consolidation of Cu/CNT composite powder. The precursor powder mixture, in which CNTs were filled into copper particles, was prepared to improve the distribution of the CNT in copper matrix. Pure copper coating was also conducted by cold spraying as a reference. Annealing heat treatment was applied to the coating to examine its effect on the properties of the composite coating. The hardness of Cu/CNT composite coating represented similar value to that of pure copper coating. It was importantly found that the electrical conductivity of the Cu/CNT composite coating significantly increased from 53% for the standard condition to almost 55% in the optimized condition, taking annealed ($500^{\circ}C/1hr$.) copper coating as a reference (100%). The thermal conductivity of Cu/CNT composite coating layer was higher than that of pure Cu coating. It was also found that the electrical and thermal conductivities of Cu/CNT composite could be improved through annealing heat treatment. The microstructural evolution of Cu/CNT coating was also investigated and related to the macroscopic properties.

Effects of Complex Oxides on HAZ Toughness of Three API X80 Linepipe Steels (API X80 라인파이프강의 용접열영향부 충격인성에 미치는 복합산화물의 영향)

  • Shin, Sang Yong;Oh, Kyoungsik;Kang, Ki Bong;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.4
    • /
    • pp.199-208
    • /
    • 2008
  • This study is concerned with effects of complex oxides on Charpy impact toughness of heat affected zone (HAZ) of API X80 linepipe steels. Three kinds of steels were fabricated by varying alloying elements such as Ti, Al, and Mg and hot-rolling conditions to form complex oxides, and their microstructures and Charpy impact properties were investigated. The number of complex oxides present in the steel containing excess Ti, Al, and Mg was twice larger than that in the conventional steels, while their size ranged from 1 to $3{\mu}m$ in the three steels. After the HAZ simulation test, the steel containing a number of oxides contained about 20 vol.% of acicular ferrite in the simulated HAZ, together with bainitic ferrite and martensite, whereas the HAZ microstructure of the conventional steels consisted of bainitic ferrite and martensite with a small amount of acicular ferrite. This formation of acicular ferrite in the oxide-containing steel was associated with the nucleation of acicular ferrite at complex oxides, thereby leading to the great (five times or more) improvement of Charpy impact toughness over the conventional steels.

High Temperature Fatigue Deformation Behavior of Automotive Heat Resistant Aluminum Alloys (자동차 부품용 내열 알루미늄 합금의 고온 피로 변형 거동)

  • Park, Jong-Soo;Sung, Si-Young;Han, Bum-Suck;Jung, Chang-Yeol;Lee, Kee-Ahn
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.1
    • /
    • pp.28-38
    • /
    • 2010
  • High temperature high cycle and low cycle fatigue deformation behavior of automotive heat resistant aluminum alloys (A356 and A319 based) were investigated in this study. The microstructures of both alloys were composed of primary Al-Si dendrite and eutectic Si phase. However, the size and distribution for eutectic Si phase varied: a coarse and inhomogeneous distributed was observed in alloy B (A319 based). A brittle intermethallic phase of ${\alpha}-Fe\;Al_{12}(Fe,Mn)_3Si_2$ was detected only in B alloy. Alloy B exhibited high fatigue life only under a high stress amplitued condition in the high cycle fatigue results, whereas alloy A showed high fatigue life when stress was lowered. With regard to the low-cycle fatigue result ($250^{\circ}C$) showing higher fatigue life as ductility increased, alloy A demonstrated higher fatigue life under all of the strain amplitude conditions. Fractographic observations showed that large porosities and pores near the outside surface could be the main factor in the formation of fatigue cracks. In alloy B. micro-cracks were formed in both the brittle intermetallic and coarse Si phasese. These micro-cracks then coalesced together and provided a path for fatigue crack propagation. From the observation of the differences in microstructure and fractography of these two automotive alloys, the authors attempt to explain the high-temperature fatigue deformation behavior of heat resistant aluminum alloys.