• Title/Summary/Keyword: microtubules

Search Result 169, Processing Time 0.025 seconds

Analysis of mechanical properties of microtubules under combined effects of surface and body forces for free and embedded microtubules in viscoelastic medium

  • Farid, Khurram;Taj, Muhammad
    • Advances in concrete construction
    • /
    • v.13 no.3
    • /
    • pp.255-264
    • /
    • 2022
  • Vibration is expected to occur in microtubules as tubular heterodimers. They oscillate like electric dipoles. Several research studies have estimated a frequency of vibration using the orthotropic model, a beam or rod like models and shell models, considering the surface forces. The effects of body forces on the dynamics of the microtubules were not yet taken into account. This study seeks to capture the body force effects on the vibration modes generated and on the corresponding frequency for microtubules. An orthotropic elastic shell model for the structural details of microtubules is used for the analysis. The tests are conducted out for microtubules, exposed to electro-magnetic and gravitational forces, the transverse vibration, radial mode vibration, and axial mode of vibration have accomplished. We therefore, evaluate and compare microtubules' frequencies with prior results of vibration frequency without the effects of body force.

Ultrastructural Aspects of Nuclear Behaviors of Pleurotus ostreatus - Behaviors of Astral Microtubules During Hyphal Development - (느타리버섯균의 핵의 동태에 관한 미세구조적 연구 -균사분화중의 성상체 미세소관에 관한 연구-)

  • Yoon, Kwon-S.
    • The Korean Journal of Mycology
    • /
    • v.24 no.1 s.76
    • /
    • pp.1-7
    • /
    • 1996
  • Premitotic, mitotic and postmitotic nuclei in the dikaryotic somatic hyphae of Pleurotus ostreatus, the oyster mushroom fungus were ultrastucturally examined using chemical fixation and freeze-substitution process, and the behaviors of astral microtubules associated with these nuclei were closely analyzed. Electron microscopic examinations revealed that astral microtubules are significantly abundant when the nuclei are in the stage of migration and at the stage of migration, the separation of spindle pole body occurs. Such an abundancy of astral microtubules in premitotic migrating nuclei is well contrasted with mitotic and postmitotic nuclei with much fewer astral microtubules and it should be noted that neither of these latter classes of nuclei exhibits the separation of the spindle pole body. It is remarkable that the postmitotic nuclei that are believed to migrate actively are associated with the astral microtubules that are less in numbers and length. During all the stages of nuclear division, astral microtubules are invariably radiating from the spindle pole bodies and nucleolus remains within the nuclear envelope of dividing nuclei throughout the division. The functions of astral microtubules developed during the nuclear division as well as the nuclear migration and separation of the spindle pole body were closely examined.

  • PDF

Effects of elastic medium on buckling of microtubules due to bending and torsion

  • Taj, Muhammad;Hussain, Muzamal;Afsar, Muhammad A.;Safeer, Muhammad;Ahmad, Manzoor;Naeem, Muhammad N.;Badshah, Noor;Khan, Arshad;Tounsi, Abdelouahed
    • Advances in concrete construction
    • /
    • v.9 no.5
    • /
    • pp.491-501
    • /
    • 2020
  • Microtubules buckle under bending and torsion and this property has been studied for free microtubules before using orthotropic elastic shell model. But as microtubules are embedded in other elastic filaments and it is experimentally showed that these elastic filaments affect the critical buckling moment and critical buckling torque of the microtubules. To prove that, we developed orthotropic Winkler like model and demonstrated that the critical buckling moment and critical buckling torque of the microtubules are orders of higher magnitude than those found for free microtubules. Our results show that Critical buckling moment is about 6.04 nNnm for which the corresponding curvature is about θ = 1.33 rad /㎛ for embedded MTs, and critical buckling torque is 0.9 nNnm for the angle of 1.33 rad/㎛. Our results well proved the experimental findings.

Analysis of nonlocal Kelvin's model for embedded microtubules: Via viscoelastic medium

  • Taj, Muhammad;Khadimallah, Mohamed A.;Hussain, Muzamal;Khedher, Khaled Mohamed;Shamim, Raja A.;Ahmad, Manzoor;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • v.26 no.6
    • /
    • pp.809-817
    • /
    • 2020
  • In cells, the microtubules are surrounded by viscoelastic medium. Microtubules, though very small in size, perform a vital role in transportation of protein and in maintaining the cell shape. During performing these functions waves propagate and this propagation of waves has been investigated using nonlocal elastic theory. But the effect of surrounding medium was not taken into account. To fill this gap, this study considers the viscoelastic medium along with nonlocal elastic theory. The analytical formulas of the velocity of waves, and the results reveal that the presence of medium reduces the velocity. The axisymmetric and nonaxisymmetric waves are separately discussed. Furthermore, the results are compared with the results gained from the studies of free microtubules. The presence of medium around microtubules results in the increase of the flexural rigidity causing a significant decrease in radial wave velocity as compared to axial and circumferential wave velocities. The effect of viscoelastic medium is more obvious on radial wave velocity, to a lesser extent on torsional wave velocity and least on longitudinal wave velocity.

Uitrastructure of Cryptoglena pigra from Korea

  • Kim, Jong-Im;Shin, Woong-Ghi
    • ALGAE
    • /
    • v.22 no.4
    • /
    • pp.325-331
    • /
    • 2007
  • Cryptoglena pigra Ehrenberg from Korea was a photosynthetic euglenoid alga, which had typical characteristics of the Euglenales. The ultrastructure examination of C. pigra revealed certain features which were distinctly photosynthetic euglenoid: one U-shaped chloroplast with thylakoid membranes; two paramylon grains appressed to both sides of the chloroplast; eyespot associated with the chloroplast but not part of it. Three flagellar roots were associated with the two basal bodies. The four-membered dorsal root arose from the dorsal body and extended anteriorly following the reservoir membrane. At the base of the reservoir the dorsal band was nucleated by the dorsal root and it ran anteriorly between the reservoir membrane and eyespot. The dorsal band was continued with the microtubules of the canal and the pellicle. The singlet dorsal microtubules at the transition level arranged into doublets by a successive linkage of the existing adjacent microtubules, and the doublets rearranged into the cytoskeletal microtubules that were continuous with four microtubules in pellicles. Finally, the sixteen ridges gave rise to the pellicular ridges. The five to six-membered ventral root extended anteriorly into a cytoplasmic pocket through the reservoir and lined a cytoplasmic pocket.

Thermal stress effects on microtubules based on orthotropic model: Vibrational analysis

  • Taj, Muhammad;Khadimallah, Mohamed A.;Hussain, Muzamal;Fareed, Khurram;Safeer, Muhammad;Khedher, Khaled Mohamed;Ahmad, Manzoor;Naeem, M. Nawaz;Qazaq, Amjad;Qahtani, Abdelaziz Al;Mahmoud, S.R.;Alwabli, Afaf S.;Tounsi, Abdelouahed
    • Advances in concrete construction
    • /
    • v.11 no.3
    • /
    • pp.255-260
    • /
    • 2021
  • Vibration of protein microtubules is investigated based upon Orthotropic Elastic Shell Model, considering the effect of thermal stresses. The complete analytical formulas of thermal vibration for microtubules are obtained. It is observed that the effects of thermal stresses on the vibrational frequency mode are more significant when the longitudinal and circumferential wave vectors are large enough. But when the length of wave vector reduces to 5 nm, these effects have no significant effects. The present results well agree with the lattice vibrations of microtubules. Moreover, the results show that the effects of thermal stresses due to small change in temperature are not so significant but with the increase in temperature its effects are obvious.

Coupled IoT and artificial intelligence for having a prediction on the bioengineering problem

  • Chunping Wang;Keming Chen;Abbas Yaseen Naser;H. Elhosiny Ali
    • Earthquakes and Structures
    • /
    • v.24 no.2
    • /
    • pp.127-140
    • /
    • 2023
  • The vibration of microtubule in human cells is the source of electrical field around it and inside cell structure. The induction of electrical field is a direct result of the existence of dipoles on the surface of the microtubules. Measuring the electrical fields could be performed using nano-scale sensors and the data could be transformed to other computers using internet of things (IoT) technology. Processing these data is feasible by artificial intelligence-based methods. However, the first step in analyzing the vibrational behavior is to study the mechanics of microtubules. In this regard, the vibrational behavior of the microtubules is investigated in the present study. A shell model is utilized to represent the microtubules' structure. The displacement field is assumed to obey first order shear deformation theory and classical theory of elasticity for anisotropic homogenous materials is utilized. The governing equations obtained by Hamilton's principle are further solved using analytical method engaging Navier's solution procedure. The results of the analytical solution are used to train, validate and test of the deep neural network. The results of the present study are validated by comparing to other results in the literature. The results indicate that several geometrical and material factors affect the vibrational behavior of microtubules.

The Status of Guanine Nucleotides in Taxol-Stabilized Microtubules Probed by 31P CPMAS NMR Spectroscopy

  • Ferdous, Taslima;Lee, Sang-Hak;Yeo, Kwon-Joo;Paik, Youn-Kee
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.15 no.2
    • /
    • pp.104-114
    • /
    • 2011
  • Rapid exchange and hydrolysis of the tubulin-bound guanine nucleotides have been known to govern the dynamics of microtubules. However, the instability and low concentration have made it difficult for the microtubule-bound GTP to be observed directly. In this study, we circumvent these problems by lyophilization and using cross-polarization techniques. $^{31}P$ NMR signals were detected from the tubulin-bound GTP in microtubules for the first time. Analysis of the $^{31}P$ CPMAS NMR spectrum indicates that GTP hydrolysis was delayed by the presence of taxol.

Quantitative Evaluation of the Mode of Microtubule Transport in Xenopus Neurons

  • Kim, Taeyong;Chang, Sunghoe
    • Molecules and Cells
    • /
    • v.21 no.1
    • /
    • pp.76-81
    • /
    • 2006
  • Tubulin is synthesized in the cell body and must be delivered to the axon to support axonal growth. However, the exact form in which these proteins, in particular tubulin, move within the axon remains contentious. According to the "polymer transport model", tubulin is transported in the form of microtubules. In an alternative hypothesis, the "short oligomer transport model", tubulin is added to existing, stationary microtubules along the axon. In this study, we measured the translocation of microtubule plus ends in soma segments, the middle of axonal shafts and the growth cone areas, by expressing GFP-EB3 in cultured Xenopus embryonic spinal neurons. We found that none of the microtubules in the three compartments were transported rapidly as would be expected from the polymer transport model. These results suggest that microtubules are stationary in most segments of the axon, thus supporting the model according to which tubulin is transported in nonpolymeric form in rapidly growing Xenopus neurons.

The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory

  • Benmansour, Djazia Leila;Kaci, Abdelhakim;Bousahla, Abdelmoumen Anis;Heireche, Houari;Tounsi, Abdelouahed;Alwabli, Afaf S.;Alhebshi, Alawiah M.;Al-ghmady, Khalid;Mahmoud, S.R.
    • Advances in nano research
    • /
    • v.7 no.6
    • /
    • pp.443-457
    • /
    • 2019
  • In this investigation, dynamic and bending behaviors of isolated protein microtubules are analyzed. Microtubules (MTs) can be considered as bio-composite structures that are elements of the cytoskeleton in eukaryotic cells and posses considerable roles in cellular activities. They have higher mechanical characteristics such as superior flexibility and stiffness. In the modeling purpose of microtubules according to a hollow beam element, a novel single variable sinusoidal beam model is proposed with the conjunction of modified strain gradient theory. The advantage of this model is found in its new displacement field involving only one unknown as the Euler-Bernoulli beam theory, which is even less than the Timoshenko beam theory. The equations of motion are constructed by considering Hamilton's principle. The obtained results are validated by comparing them with those given based on higher shear deformation beam theory containing a higher number of variables. A parametric investigation is established to examine the impacts of shear deformation, length scale coefficient, aspect ratio and shear modulus ratio on dynamic and bending behaviors of microtubules. It is remarked that when length scale coefficients are almost identical of the outer diameter of MTs, microstructure-dependent behavior becomes more important.