• Title/Summary/Keyword: millimeter-band

Search Result 281, Processing Time 0.031 seconds

V-band CPW receiver chip set using GaAs PHEMT (GaAs PHEMT를 이용한 V-band CPW receiver chip set 설계 및 제작)

  • W. Y. Uhm;T. S. Kang;D. An;Lee, B. H.;Y. S. Chae;Park, H. M.;J. K. Rhee
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.69-73
    • /
    • 2002
  • We have designed and fabricated a low-cost, V-band CPW receiver chip set using GaAs PHEMT technology for the application of millimeter-wave wireless communication systems. Low noise amplifiers and down-converters were developed for this chip set. The fabricated low noise amplifier showed an S$\sub$21/ gain of 14.9 ㏈ at 60 ㎓ and a noise figure of 4.1 ㏈ at 52 ㎓. The down-converter exhibited a high conversion gain of 2 ㏈ at the low LO Power of 0 ㏈m. This work demonstrates that the GaAs PHEMT technology is a viable low-cost solution for V-band applications.

  • PDF

A New Comb Circular Polarizer Suitable for Millimeter-Band Application

  • Eom, Soon-Young;Korchemkin, Y.B.
    • ETRI Journal
    • /
    • v.28 no.5
    • /
    • pp.656-659
    • /
    • 2006
  • This letter presents a new polarizer which has a simple comb structure inside a circular waveguide. The electrical performance of the proposed comb polarizer is optimized by a circular waveguide radius and by the physical parameters of the comb plates. This polarizer is suitable for providing good performance in millimeter-band application because of its simple structure and low fabrication cost. In our experiments the dual-band comb polarizer designed in band 1(K) and band 2(Ka) showed good electrical performance without any tuning elements.

  • PDF

High Efficiency Q-band MIMIC HEMT-Oscillator Operating at Low Voltages (고효율 및 저전압 동작 특성의 Q-band MIMIC HEMT발진기)

  • Lee, Mun-Kyo;An, Dan;Lee, Bok-Hyung;Kim, Sung-Chan;Lim, Byeong-Ok;Han, Hyo-Jong;Chae, Yeon-Sik;Shin, Dong-Hoon;Kim, Yong-Hoh;Park, Hyung-Moo;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.4
    • /
    • pp.45-50
    • /
    • 2004
  • In this paper, we present the low voltage and high efficiency Q-band MIMIC oscillator using device-level power combined structure. The oscillator was successfully integrated by using 0.1 ${\mu}{\textrm}{m}$ GaAs PHEMTS and the CPW transmission line. We show that the highest efficiency is 19 % with an output power of 2.6 ㏈m at a frequency of 34.56 ㎓. The operating voltage of the oscillator is 2.2 V which is lower voltage than that of previously reported oscillators at Q-band. And the maximum output power of 6.7 ㏈m was obtained at a frequency of 34.56 ㎓.

Design and Fabrication of Low LO Power V-band CPW Mixer Module

  • Dan An;Lee, Bok-Hyung;Chae, Yeon-Sik;Park, Hyun-Chang;Park, Hyung-Moo;Chun, Young-Hoon;Rhee, Jin-Koo
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1133-1136
    • /
    • 2002
  • We designed and fabricated a low local oscillation (LO) power V-band CPW mixer module using a CPW-to-waveguide transition technology for the application of millimeter-wave wireless communication systems. The mixer was designed using a unique gate mixing architecture to achieve simultaneously a low LO input power, a high conversion gain, and good LO-RF isolation characteristics. The fabricated mixer exhibited a high conversion gain of 2 dB at a low LO power of 0 dBm. For data transmission of the 60 ㎓ wireless LNA systems, we fabricated a CPW-to-waveguide converter module of WR-15 type and mounted the fabricated mixer in the converter module. The fabricated V-band mixer exhibited a higher conversion gain and a lower LO input power than other reported V-band mixers.

  • PDF

The low conversion loss and low LO power V-band MIMIC Up-mixer (낮은 LO 입력 및 변환손실 특성을 갖는 V-band MIMIC Up-mixer)

  • Lee Sang Jin;Ko Du Hyun;Jin Jin Man;An Dan;Lee Mun Kyo;Cho Chang Shik;Lim Byeong Ok;Chae Yeon Sik;Park Hyung Moo;Rhee Jin Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.12
    • /
    • pp.103-108
    • /
    • 2004
  • In this paper, we present MIMIC(Millimeter-wave Monolithic Integrated Circuit) up-mixer with low conversion loss and low LO power for the V-band transmitter applications. The up-mixer was successfully integrated by using 0.1 ㎛ GaAs pseudomorphic HEMTs(PHEMTs) and coplanar waveguide (CPW) structures. The circuit is designed to operate at RF frequencies of 60.4 GHz, IF frequencies of 2.4 GHz, and LO frequencies of 58 GHz. The fabricated MIMIC up-mixer size is 2.3 mmxl.6 mm. The measured results show that the low conversion loss of 1.25 dB when input signal is -10.25 dBm at LO power of 5.4 dBm. The LO to RF isolation is 13.2 dB at 58 GHz. The fabricated V-band up-mixer represents lower LO input power and conversion loss characteristics than previous reported millimeter-wave up-mixers.

Broadband W-band Tandem coupler using MIMIC technology (MIMIC 기술을 이용한 광대역 W-band Tandem 커플러)

  • Lee, Mun-Kyo;An, Dan;Lee, Bok-Hyung;Lim, Byeong-Ok;Lee, Sang-Jin;Moon, Sung-Woon;Jun, Byoung-Chul;Kim, Yong-Hoh;Yoon, Jin-Seob;Kim, Sam-Dong;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.7 s.361
    • /
    • pp.105-111
    • /
    • 2007
  • In this paper, we designed and fabricated a 3-dB tandem coupler using air-bridge technology for millimeter-wane monolithic integrated circuits, operating at W-band($75{\sim}110\;GHz$) frequency. Tightly edge-coupled CPW line has low directivity due to different even-mode and odd-mode phase velocity. To overcome this disadvantage, a 3-dB tandem coupler which comprises the two-sectional weakly parallel-coupled lines with equal phase velocity was designed at W-band. The proposed coupler was fabricated using air-bridge technology to monolithically materialize the uniplanar coupler structure instead of conventional multilayer or wire bonded structure. From the measurements, the coupling coefficient of $2.9{\sim}3.6\;dB$ and the good phase difference of $91.2{\pm}2.9^{\circ}$ were obtained in broad frequency range of $75{\sim}100\;GHz$.

A Micromachined Millimeter-Wave 60 GHz Band-pass Filter (마이크로머시닝 기술을 이용한 60 GHz 대역 통과 여파기)

  • Maeng, Sung-Chul;Yun, Tae-Soon;Kim, Ki-Byoung;Lee, Hoon;Kim, Jong-Yong;Lee, Jong-Chul;Lee, Bok-Hyoung;Kim, Hae-Sung;Shin, Dong-Hoon;Rhee, Jin-Koo
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.25-28
    • /
    • 2002
  • In this paper, a micromachined millimeter-wave end-gap band-pass filter (BPF) is presented. The millimeter-wave BPF is designed using 3D design software, Zeland IE3D with the center frequency of 60 GHz, band width of 3 GHz, ripple of 1㏈ and insertion loss of 2.5dB. This type of micromachined BPF can be used in millimeter-wave circuit.

  • PDF

An Experimental Study on Millimeter Wave Band Radome for ELINT Directional Finding System (ELINT 방향탐지 시스템에 적용되는 밀리미터파 대역 레이돔에 대한 실험적 연구)

  • Kim, Tae-Hyun;Park, Boem-Jun;Lee, Jung-Hoon;Lee, Byung-Nam
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.161-168
    • /
    • 2012
  • In this paper, we have experimentally studied on phase characteristics of airborne radome for ELINT directional finding system, because it is difficult to find theoretical solutions for phase error of the radome. Especially, we described the millimeter wave band radome that was fabricated with cyanate-ester material and its thickness was 2mm. We presented the phase error about millimeter band radome. That phase error is about 30 degrees for parallel and perpendicular polarization in the K-Ka band. That is reasonable value for the ELINT directional finding system.

Design and fabrication of Q-band MIMIC oscillator using the MEMS technology (MEMS 기술을 이용한 Q-band MIMIC 발진기의 설계 및 제작)

  • Baek Tae-Jong;Lee Mun-Kyo;Lim Byeong-Ok;Kim Sung-Chan;Lee Bok-Hyung;An Dan;Shin Dong-Hoon;Park Hyung-Moo;Rhee Jin Koo
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.335-338
    • /
    • 2004
  • We suggest Q-band MEMS MIMIC (Millimeter wave Monolithic Integrated Circuit) HEMT Oscillator using DAML (Dielectric-supported Airgapped Mcrostrip Line) structure. We elevated the signal lines from the substrate using dielectric post, in order to reduce the substrate dielectric loss and obtain low losses at millimeter-wave frequency. These DAML are composed with heist of $10\;{\mu}m$ and post size with $20\;{\mu}m\;{\times}\;20\;{\mu}m$. The MEMS oscillator was successfully integrated by the process of $0.1\;{\mu}m$ GaAs PHEMTs, CPW transmission line and DAML. The phase noise characteristic of the MEMS oscillator was improved more than 7.5 dBc/Hz at a 1 MHz offset frequency than that of the CPW oscillator And the high output power of 7.5 dBm was measured at 34.4 GHz.

  • PDF

V-band MIMIC Quadruple Subharmonic Mixer Using Cascode Harmonic Generator (Cascode 하모닉 발생기를 이용한 V-band MIMIC Quadruple Subharmonic 믹서)

  • An Dan;Lee Mun Kyo;Jin Jin Man;Go Du Hyun;Lee Sang Jin;Kim Sung Chan;Chae Yeon Sik;Park Hyung Moo;Shin Dong Hoon;Rhee Jin Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.5 s.335
    • /
    • pp.55-60
    • /
    • 2005
  • A V-band MIMIC quadruple subharmonic mixer is reported in this paper. The cascode harmonic generator is proposed for a high conversion gain. The proposed cascode harmonic generator is shown with a 4-th harmonic output characteristic that represents an average of 2.9 dB and a maximum of 4 dB higher than the conventional multiplier. The measured result of the subharmonic mixer has a conversion gain of 3_4 dB which a good conversion gain at a LO power of 13 dBm. Isolations of LO-to-IF and LO-to-RF were obtained -53.6 dB and -46.2 dB, respectively. The conversion gain of the subharmonic mixer in this study has a higher conversion gain compared with some other reports in millimeter-wave range.