• Title/Summary/Keyword: mitochondria hypothesis

Search Result 6, Processing Time 0.019 seconds

Mitochondria Medicine and its Research Trend (미토콘드리아 의학과 연구동향)

  • Shim, E.B.
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.5
    • /
    • pp.355-361
    • /
    • 2009
  • Mitochondria play a key role in maintaining life by producing ATP and heat. Recent researches have demonstrated that degenerative diseases such as heart failure, obesity/diabetes, cardiovascular disease, and psychiatric diseases are accompanied by mitochondria dysfunction. In this sense, mitochondria medicine considers the significance of mitochondria in human pathology and tries to explain degenerative diseases as a fatal consequence of mitochondria dysfunction. Here, I introduce the fundamentals of mitochondria physiology and present examples showing the relationship between mitochondria dysfunction and chronic complex diseases. Although mitochondria medicine uses a molecular biological approach predominantly, a biomedical engineering approach might play a critical role in unveiling the complexity of mitochondria medicine and in its application to the diagnosis and treatment of chronic diseases. Thus, I also briefly review the prospects of research using biomedical engineering methods.

Mitochondria Hypothesis on the Obesity-Prone Tendency in Tae-Eum People (태음인의 비만경향에 대한 미토콘드리아 가설)

  • Shim, Eun-Bo;Lee, Si-Woo;Kim, Sung-Joon;Leem, Chae-Hun;Kwon, Young-Kyu;Baik, You-Sang;Kim, Jong-Yeol;Earm, Yung-E.
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.6
    • /
    • pp.1241-1246
    • /
    • 2009
  • It has been suggested that Tae-Eum peoples are prone to obesity. Although extensive clinical observations have shown this tendency in Sasang Constitutional Medicine (SCM), no scientific hypothesis has been proposed to delineate its mechanism. According to SCM theory, Tae-Eum peoples have a hypoactive lung system and a hyperactive liver system. In this paper we propose a new hypothesis explaining the tendency of obesity in Tae-Eum people in the viewpoint of cell physiology. The hypoactive lung system might imply an attenuated 'respiration' at the cell/subcell level, namely mitochondrial oxygen consumption. Because a functional weakness in mitochondria energy metabolism indicates intrinsic hypo-activity in the consumption (or production) of metabolic energy, we deduced that the tendency can easily induce body weight gain via an increase in anabolism. This relation is also introduced in the graph of cellular metabolic power against body weight. To test this hypothesis, we analyzed the clinical data with 863 subjects. Statistical analysis of the data showed that Tae-Eum peoples had relatively a lower cellular metabolic power, and that the percentage of peoples with BMI>25 was significantly higher than that of the other constitutional types.

Mutation of Placental Mitochondria in the Etiology of Preeclampsia (자간전증 원인에 있어서 태반 미토콘드리아의 돌연변이)

  • 김영태;박상희;김선행
    • Development and Reproduction
    • /
    • v.3 no.1
    • /
    • pp.15-19
    • /
    • 1999
  • Preeclampsia is a common, pregnancy-induced hypertensive disease leading to severe morbidity in the mother and fetus. Although the etiology of preeclampsia remains unclear, many studies focus mutation of placental mitochondria as the cause of this disease. This review covers mutation of placental mitochondria as the possible etiology of preeclampsia, prevention and treatment strategies based on the hypothesis of mutation of placental mitochondria in the etiology of preeclampsia.

  • PDF

Role of Mitochondria in Oxidative Damage of Post-Ischemic Reperfused Hearts (허혈/재관류 심장의 산화손상에서 미토콘드리아의 역할)

  • Park, Jong-Wan;Chun, Yang-Sook;Kim, Myung-Suk
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.2
    • /
    • pp.201-209
    • /
    • 1996
  • Restoration of the blood flow after a period of ischemia is accompanied by generation of toxic oxygen radicals. This phenomenon may account for the occurrence of reperfusion-mediated tissue injury in ischemic hearts. In in vitro studies, although oxygen radicals can be generated from a variety of sources, including xanthine oxidase system, activated leucocytes, mitochondria and others, the most important source and mechanism of oxygen radical production in the post-ischemic reperfused hearts is unclear. In the present study, we tested the hypothesis that the respiratory chain of mitochondria might be an important source of oxygen radicals which are responsible for the development of the reperfusion injury of ischemic hearts. Langendorff-perfused, isolated rat hearts were subjected to 30 min of global ischemia at $37^{\circ}C$, followed by reperfusion. Amytal, a reversible inhibitor of mitochondrial respiration, was employed to assess the mitochondrial contributions to the development of the reperfusion injury. Intact mitochonria were isolated from the control and the post-ischemic reperfused hearts. Mitochondrial oxygen radical generation was measured by chemiluminescence method and the oxidative tissue damage was estimated by measuring a lipid peroxidation product, malondialdehyde(MDA). To evaluate the extent of the reperfusion injury, post-ischemic functional recovery and lactate dehydrogenase(LDH) release were assessed and compared in Amytal-treated and -untreated hearts. Upon reperfusion of the ischemic hearts, MDA release into the coronary effluent was markedly increased. MDA content of mitochondria isolated from the post-ischemic reperfused hearts was increased to 152% of preischemic value, whereas minimal change was observed in extramitochondrial fraction. The generation of superoxide anion was increased about twice in mitochondria from the reperfused hearts than in those from the control hearts. Amytal inhibited the mitochondrial superoxide generation significantly and also suppressed MDA production in the reperfused hearts. Additionally, Amytal prevented the contractile dysfunction and the increased release of LDH observed in the reperfused hearts. In conclusion, these results indicate that the respiratory chain of mitochondria may be an important source of oxygen radical formation in post-ischemic reperfused hearts, and that oxygen radicals originating from the mitochondria may contribute to the development of myocardial reperfusion injury.

  • PDF

Replicative Senescence in Cellular Aging and Oxidative Stress (세포 노화에 있어서 복제 세네센스 현상과 산화적 스트레스의 영향)

  • 박영철
    • Toxicological Research
    • /
    • v.19 no.3
    • /
    • pp.161-172
    • /
    • 2003
  • Explanted mammalian cells perform a limited number of cell division in vitro and than are arrested in a state known as replicative senescence. Such cells are irreversibly blocked, mostly in the G1 phase of cell cycle, and are no longer sensitive to growth factor stimulation. Thus replicative senescence is defined as a permanent and irreversible loss of replicative potential of cells. For this characteristic, replicative senescence seems to evolve to protect mammalian organism from cancer. However, senescence also contributes to aging. It seems to decrease with age of the cell donor and, as a form of cell senescence, is thought to underlie the aging process. Extensive evidence supports the idea that progressive telomere loss contributes to the phenomenon of cell senescence. Telomeres are repetitive structures of the sequence (TTAGGG)n at the ends of linear chromosomes. It has been shown that the average length of telomere repeats in human somatic cells decreases by 30∼200 bp with each cell division. It is generally believed that when telomeres reach a critical length, a signal is activated to initiate the senescent program. This has given rise to the hypothesis that telomeres act as mitotic clocks to regulate lifespan. One proposes that cumulative oxidative stress, mainly reactive oxygen species generated from mitochondria, may mainly cause telomere shortening, accelerating aging. Here, the biological importance and mechanism of replicative senescence were briefly reviewed. Also it was summarized that how oxidative stress affects replicative senescence and telomere shortening.

Oral administration of ginseng berry concentrate improves lactate metabolism and increases endurance performance in mice

  • Eun-Ju Jin;Shibo Wei;Yunju Jo;Thanh T. Nguyen;Moongi Ji;Man-Jeong Paik;Jee-Heon Jeong;Se Jin Im;Dongryeol Ryu
    • BMB Reports
    • /
    • v.56 no.6
    • /
    • pp.353-358
    • /
    • 2023
  • In the present study, to determine the efficacy of oral supplementation of ginseng berry extracts in augmenting exercise performance and exercise-associated metabolism, male mice were given orally 200 and 400 mg/kg of body weight (BW) of GBC for nine weeks. Although there are no differences in pre-exercise blood lactate levels among (1) the control group that received neither exercise nor GBC, (2) the group that performed only twice-weekly endurance exercise, and (3) and (4) the groups that combined twice-weekly endurance exercise with either 200 or 400 mg/kg GBC, statistically significant reductions in post-exercise blood lactate levels were observed in the groups that combined twice-weekly endurance exercise with oral administration of either 200 or 400 mg/kg GBC. Histological analysis showed no muscle hypertrophy, but transcriptome analysis revealed changes in gene sets related to lactate metabolism and mitochondrial function. GBC intake increased nicotinamide adenine dinucleotide levels in the gastrocnemius, possibly enhancing the mitochondrial electron transport system and lactate metabolism. Further molecular mechanisms are needed to confirm this hypothesis.