• Title/Summary/Keyword: mixed debugging process

Search Result 2, Processing Time 0.017 seconds

A Software Performance Evaluation Model with Mixed Debugging Process (혼합수리 과정을 고려한 소프트웨어성능 평가 모형)

  • Jang, Kyu-Beom;Lee, Chong-Hyung
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.6
    • /
    • pp.741-750
    • /
    • 2011
  • In this paper, we derive an software mixed debugging model based on a Markov process, assuming that the length of time to perform the debugging is random and its distribution may depend on the fault type causing the failure. We assume that the debugging process starts as soon as a software failure occurs, and either a perfect debugging or an imperfect debugging is performed upon each fault type. One type is caused by a fault that is easily corrected and in this case, the perfect debugging process is performed. An Imperfect debugging process is performed to fix the failure caused by a fault that is difficult to correct. Distribution of the first passage time and working probability of the software system are obtained; in addition, an availability function of a software system which is the probability that the software is in working at a given time, is derived. Numerical examples are provided for illustrative purposes.

Software Taskset Processing Evaluation Based on a Mixed Debugging Process

  • Kim, U-Jung;Lee, Chong-Hyung
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.4
    • /
    • pp.571-577
    • /
    • 2012
  • Modules that consist of software are respectively coded in the early development phase and the modules are unified as a software. After unification, the software is repeatedly tested with a given taskset (the set of module tasks that are tested simultaneously) until a required performance level is satisfied. In this paper, we expand the one-module software debugging model of Jang and Lee (2011) to a multi-module debugging model and derive the taskset completion probability and the mean of the completed tasksets under the assumption that the processing times of module tasks given in a taskset are mutually dependent.