• Title/Summary/Keyword: modified asphalt pavement

Search Result 79, Processing Time 0.023 seconds

Application of Hydrated Lime-Modified Asphalt Mixture Properties to Korean Pavement Research Program (한국형 도로포장 설계 프로그램의 소석회 사용 아스팔트 혼합물 특성 적용)

  • Kim, Dowan;Lee, Sangyum;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.17 no.4
    • /
    • pp.69-75
    • /
    • 2015
  • PURPOSES : The hydrated lime-modified asphalt, which improves moisture resistance, is normally used for pavements to reduce the number of potholes. However, the method of applying the material properties of the lime-modified asphalt mixture for use in pavements is not covered in the Korean Pavement Research Program (KPRP). The objective of this research is to find a method for the design application of lime-modified asphalt's material properties to the KPRP. METHODS: The section for test design is selected in some conditions which are related to the level of design regarding Annual Average Daily Traffic (AADT). To define the application methods of hydrated lime in the KPRP, the models of fatigue, rut and international roughness index (IRI) are determined based on the M-EPDG test results from some earlier research results. Moreover, it is well known that dynamic moduli of the unmodified mixture are not different from those of the lime-modified mixture. RESULTS: The performance results of hydrated lime-modified asphalt pavement were not very much different from those of the unmodified pavement, which meant the limited design regulations regarding fatigue failure, rutting deformation and IRI. CONCLUSIONS: The KPRP uses the weather model from the data for previous 10 years. It implies that the KPRP cannot predict abnormal climate changes accurately. Hence, the predictive weather data regarding the abnormal climate changes are unreliable. Secondly, the KPRP cannot apply the moisture resistance of asphalt mixtures. Therefore, a second level of design study will have to be performed to reflect the influence of moisture. It means that the influence on pavement performance can be changed by the application of hydrated lime in asphalt mixture design.

Pavement Performance Model Development Using Bayesian Algorithm (베이지안 기법을 활용한 공용성 모델개발 연구)

  • Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.18 no.1
    • /
    • pp.91-97
    • /
    • 2016
  • PURPOSES : The objective of this paper is to develop a pavement performance model based on the Bayesian algorithm, and compare the measured and predicted performance data. METHODS : In this paper, several pavement types such as SMA (stone mastic asphalt), PSMA (polymer-modified stone mastic asphalt), PMA (polymer-modified asphalt), SBS (styrene-butadiene-styrene) modified asphalt, and DGA (dense-graded asphalt) are modeled in terms of the performance evaluation of pavement structures, using the Bayesian algorithm. RESULTS : From case studies related to the performance model development, the statistical parameters of the mean value and standard deviation can be obtained through the Bayesian algorithm, using the initial performance data of two different pavement cases. Furthermore, an accurate performance model can be developed, based on the comparison between the measured and predicted performance data. CONCLUSIONS : Based on the results of the case studies, it is concluded that the determined coefficients of the nonlinear performance models can be used to accurately predict the long-term performance behaviors of DGA and modified asphalt concrete pavements. In addition, the developed models were evaluated through comparison studies between the initial measurement and prediction data, as well as between the final measurement and prediction data. In the model development, the initial measured data were used.

An Analytical Study to Reduce Plastic Deformation in Intersection Pavements (교차로 포장 소성변형 저감을 위한 해석적 연구)

  • Choi, Jun-Seong;Lee, Kang-Hun;Kwon, Soo-Ahn;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.14 no.4
    • /
    • pp.29-36
    • /
    • 2012
  • PURPOSES : Plastic deformation is frequently made in intersection asphalt pavement at its early age due to deceleration and stoppage of vehicles. This study has been performed to provide a mechanistic basis for reasonable selection of paving method to minimize the plastic deformation at intersection. METHODS : Pavement layer, temperature, traffic volume of the intersections managed by the Daejeon Regional Construction and Management Administration were collected to calculate asphalt dynamic modulus with pavement depth by using a prediction equation suggested by the Korean pavement design guide. Performance of ordinary dense-graded asphalt pavement, polymer modified asphalt pavement, and fiber reinforced asphalt pavement was analyzed by finite element method and the results were used in a performance model to predict the plastic deformation. RESULTS : In aspect of performance, the three paving methods were usable under low traffic while the fiber reinforced asphalt pavement was the most suitable under heavy traffic. CONCLUSIONS : Reasonable paving method suitable for traffic characteristics in the intersection might be decided by considering economic feasibility.

A Study on Decision Criteria of traffic volumes for Choosing of Modified Asphalt Pavement in Korea National Highway (국도 아스팔트포장의 특수포장 적용을 위한 교통량 기준 제안 연구)

  • Kwon, Soo-Ahn;Jeong, Kyoung-Young;Suh, Young-Chan
    • International Journal of Highway Engineering
    • /
    • v.4 no.3 s.13
    • /
    • pp.25-33
    • /
    • 2002
  • Most national highways are paved with asphalt. Since increased traffic volume and high temperature have reduced the service life of pavements, modified asphalt pavements or stone mastic asphalt (SMA) have gradually been adopted. However, pavement engineers have difficulty to select pavement types due to lack of standard specifications for these new pavement types. In this study, service lives of general asphalt pavements based on traffic volume were analyzed using the inventory data of pavement management system (PMS) collected for last 10 years. The results showed 9.5 and 5.6 year average service lives for new constructed pavements and overlays, respectively. The traffic volumes for the design life of 10 years was presented based on confidence levels using service life distributions of current pavements. For the confidence level of 90%, 2,300 ESAL was obtained; 1,500 ESAL for the confidence level of 80%. This indicates that modified asphalt pavements should be considered for sections with the higher traffic volume.

  • PDF

Cost Analysis of Asphalt Pavements Reinforced with Glass Fiber and Polymer Modified Using Falling Weight Deflectometer (Falling Weight Deflectometer를 이용한 섬유보강 아스팔트 및 폴리머 개질 아스팔트 포장의 비용 효과 분석)

  • Kim, Boo-Il;Lee, Moon-Sup;Jeon, Sung-Il;Kim, Sang-Kyu
    • International Journal of Highway Engineering
    • /
    • v.11 no.4
    • /
    • pp.153-160
    • /
    • 2009
  • Falling Weight Deflectometer (FWD) tests were performed to evaluate the structural capacity of glass fiber reinforced (GFR), polymer modified (PM), and unmodified asphalt pavement in Korea-LTPP (Long Term Pavement Performance) section. FWD tests showed that the tensile strains of GFR and PM asphalt pavements at the bottom of asphalt layer were 29% and 21% less than that of unmodified asphalt pavement. The structural capacity was then used as a performance criterion for calculating the cost effect of GFR and PM asphalt pavements. From the results, 5cm of asphalt layer thickness was reduced by applying GFR asphalt, and 3cm by applying PM asphalt. However, construction cost of PM and GFR asphalt pavement were increased due to the higher GFR and PM asphalt price. Life cycle cost analysis showed that the initial construction cost of GFR and PM asphalt pavement were higher but the management and user cost were less than those of unmodified asphalt pavement.

  • PDF

Performance Evaluation of High-RAP Asphalt Mixtures using Rapid-Setting Polymer-Modified Asphalt Emulsion (긴급보수용 개질 유화아스팔트 고비율 순환골재를 사용한 상온 아스팔트 혼합물의 성능 평가)

  • Kwon, Bong Ju;Heo, Jae Min;Han, Yong Jin;Rhee, Suk Keun
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.21-30
    • /
    • 2015
  • PURPOSES : The purpose of this study was to evaluate the performance of rapid-setting polymer-modified asphalt mixtures with a high reclaimed asphalt pavement (RAP) content. METHODS: A literature review revealed that emulsified asphalt is actively used for cold-recycled pavement. First, two types of rapid-setting polymer-modified asphalt emulsion were prepared for application to high-RAP material with no virgin material content. The quick-setting polymer-modified asphalt mixtures using two types of rapid-setting polymer-modified asphalt emulsion were subjected to the following tests: 1) Marshall stability test, 2) water immersion stability test and 3) indirect tensile strength ratio test. RESULTS AND CONCLUSIONS : Additional re-calibration of the RAP was needed for laboratory verification because the results of analyzing RAP aggregates, which were collected from different job sites, did not deviate from the normal range. The Marshall stability of each type of binder under dry conditions was good. However, the Type B mixtures with bio-additives performed better in the water immersion stability test. Moreover, the overall results of the indirect tensile strength test of RAP mixtures with Type B emulsions exceeded 0.7. Further research, consisting of lab testing and on-site application, will be performed to verify the possibility of using RAP for minimizing the closing of roadways.

Evaluating Rutting Performance of High-Durability Asphalt Concrete Mixtures and Epoxy Used for Installation of High-Speed Weigh-In-Motion System (고속축중기 시스템의 도입을 위한 고기능 아스팔트 혼합물 및 에폭시의 내구성 평가)

  • Kwon, Hong Jun;Lee, Jong Sub;Kwon, Oh Sun;Kwon, Soon Min
    • International Journal of Highway Engineering
    • /
    • v.20 no.4
    • /
    • pp.7-13
    • /
    • 2018
  • PURPOSES : In order to apply high-speed weigh-in-motion (HS WIM) systems to asphalt pavement, three high-durability asphalt concrete mixtures installed with a WIM epoxy are evaluated. METHODS : In this study, dynamic stability, number of loading repetitions to reach the rut depth of 1 mm, and rut depth measurements of three asphalt mixtures at $60^{\circ}C$ were compared using an Asphalt Pavement Analyzer (APA). Laboratory-fabricated material and field core samples were prepared and tested according to KS F2374. RESULTS : Through the laboratory tests, it was found that all three modified asphalt mixtures (stone-mastic, porous, and semi-rigid) with WIM epoxy showed favorable permanent deformation results and passed the dynamic stability criterion of 3000 loading repetitions per 1 mm. In addition, it was confirmed that the modified SMA mixtures cored from the field construction yields satisfactory rutting testing results using the APA. Finally, the epoxy used for the HS WIM installation shows good adhesion with the three asphalt mixtures and permanent deformation resistance.

Evaluation of Early age Performance of Geogrid-reinforced Asphalt Pavements (섬유그리드 보강 아스팔트 포장 초기 공용성 평가)

  • Yeo, Hyun-Dong;Kim, Gwang-Duk;Kwon, Soo-Ahn;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.53-60
    • /
    • 2010
  • Geogrid-reinforced asphalt pavement is a pavement type applicable to overlay for repair in addition to new construction. The geosynthetic materials are placed between the asphalt layers to stop or delay propagation of the cracking existing at lower layers and to reduce the rutting. In this study, the cracking, rutting, IRI, and deflection were investigated to compare the performance between geogrid-reinforced asphalt pavement and ordinary or polymer modified asphalt pavement. Based on field conditions, the 11 sections were classified into 3 groups; sections proper to compare, sections with restrictions to compare, sections with difficulties in comparing, and the data was statistically analyzed. Larger resistance to rutting and increased IRI were measured at the geogrid-reinforced asphalt pavement sections comparing to the ordinary or polymer modified asphalt pavement sections. However, the deflections of the pavements were similar and the resistance to the cracking could not be compared because of short pavement lives.

Evaluation of Rutting Resistance of Modified Asphalt Concrete by Accelerated Pavement Testing (포장가속시험을 통한 개질아스팔트 혼합물의 소성변형 저항성 평가 연구)

  • Kim, Jun Hyung;Suh, Young Chan;Kwon, Soo Ahn;Cho, Yong Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2D
    • /
    • pp.285-292
    • /
    • 2006
  • The objective of this study is to introduce the development of the first Korean full-scale APT(Accelerated Pavement Tester) and to compare the performances of general dense grade asphalt mixture and modified asphalt mixtures as the first running of the tester. The tests evaluated the rutting resistance for dense grade mixture and three different modified asphalt mixture under three different temperature conditions (25-30, 40, $50^{\circ}C$). The results of the testing were compared with the laboratory test results. Results of the tests indicated that the all the modified asphalt sections showed higher rutting resistance than the dense grade section. Especially, the difference was more noticeable at higher temperature condition. Additionally, $G^*/sin{\delta}$ is found out to be an important factor for permanent deformation prediction whereas the resilient modulus was not.

Development of a Junction between Airport Concrete and Asphalt Pavements (공항 콘크리트와 아스팔트 포장 간의 접속 방법 개발)

  • Park, Hae Won;Kim, Dong Hyuk;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • v.20 no.4
    • /
    • pp.15-20
    • /
    • 2018
  • PURPOSES : The purpose of this study is to analyze the magnitude of shoving of asphalt pavement by junction type between airport concrete and asphalt pavements, and to suggest a junction type to reduce shoving. METHODS : The actual pavement junction of a domestic airport, which is called airport "A" was modified by placing the bottom of the buried slab on the top surface of the subbase. A finite element model was developed that simulated three junction types: a standard section of junction proposed by the FAA (Federal Aviation Administration), an actual section of junction from airport "A" and a modified section of junction from airport "A". The vertical displacement of the asphalt surface caused by the horizontal displacement of the concrete pavement was investigated in the three types of junction. RESULTS : A vertical displacement of approximately 13 mm occurred for the FAA standard section under horizontal pushing of 100 mm, and a vertical displacement of approximately 55 mm occurred for the actual section of airport "A" under the same level of pushing. On the other hand, for the modified section from airport "A" a vertical displacement of approximately 17 mm occurred under the same level of pushing, which is slightly larger than the vertical displacement of the FAA standard section. CONCLUSIONS : It was confirmed that shoving of the asphalt pavement at the junction could be reduced by placing the bottom of the buried slab on the top surface of the subbase. It was also determined that the junction type suggested in this study was more advantageous than the FAA standard section because it resists faulting by the buried slab that is connected to the concrete pavement. Faulting of the junctions caused by aircraft loading will be compared by performing finite element analysis in the following study.