• Title/Summary/Keyword: modified balun

Search Result 9, Processing Time 0.024 seconds

Bandwidth Enhancement of Double-Dipole Quasi-Yagi Antenna Using Modified Microstrip-to-Coplanar Strip line Balun (변형된 마이크로스트립-동일면 스트립 선로 밸런을 이용한 이중 다이폴 준-야기 안테나의 대역폭 향상)

  • Yeo, Junho;Lee, Jong-Ig;Baek, Woon-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.457-463
    • /
    • 2016
  • In this paper, a method of enhancing the bandwidth of a double-dipole quasi-Yagi antenna (DDQYA) using a modified integrated balun is presented. The modified integrated balun consists of a microstrip (MS) line inserted along the center of a coplanar strip (CPS) line and the end of the MS line is connected to the CPS line through a shorting pin at the feed point. The geometry of the modified integrated balun is adjusted to improve the bandwidth of the DDQYA. In addition, the performance of the proposed balun in a back-to-back configuration is compared with a conventional balun. The proposed antenna with the optimized modified integrated balun is fabricated on an FR4 substrate, and the experiment results show that the antenna has a frequency band of 1.56-3.04 GHz(64.4%) for a VSWR < 2, which shows enhanced bandwidth compared to the DDQYA with the conventional balun.

Ring Hybrid Balun with Good Amplitude and Phase Balance and Its Application to a Balanced Frequency Doubler (진폭과 위상 특성을 개선한 링 하이브리드 결합기를 사용한 평형 주파수 체배기 회로)

  • Na, Won;Lee, Moon-Que
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.7
    • /
    • pp.713-718
    • /
    • 2008
  • A modified broad-band ring hybrid balun with additional two shorted $\lambda$/4 stubs is proposed. The proposed balun is a modified version which has additional two shorted $\lambda$/4 stubs to compensate phase and amplitude imbalances of conventional ring hybrid coupler. To demonstrate the validity of the proposed balun, a balanced Schottky-diode frequency doubler is designed and measured. Measurement data show that the proposed frequency doubler has around 10 dB conversion loss and more than 30 dB fundamental suppression over an input range of $1.6{\sim}2.35\;GHz$.

The Design of Broadband balun with good phase balance using ${\lambda}/4$ shorted stub (${\lambda}/4$ 단락 스터브를 이용한 우수한 위상 특성을 갖는 발룬 회로의 설계)

  • Cho, Il-Hyun;Lee, Moon-Que;Kim, Hyeong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2309-2311
    • /
    • 2005
  • A broadband microstrip balun is proposed and designed using a ${\lambda}/4$short-stub in order to compensate phase imbalance. For the demonstration, two baluns are proposed and designed using a ${\lambda}/4$ shorted stub. One is a modified form of the conventional Wilkinson balun, and the other is a modified ring hybrid. Baluns are implemented on TLX-9 substrate of which the dielectric constant is 2.54 and the thickness is 0.5mm. The measurements show a bandwidth of 500MHz at the center frequency of 2GHz.

  • PDF

3-Element Quasi-Yagi Antenna with a Modified Balun for DTV Reception (변형된 밸런을 갖는 DTV 수신용 3소자 준-야기 안테나)

  • Lee, Jong-Ig;Yeo, Junho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.4
    • /
    • pp.672-678
    • /
    • 2017
  • In this paper, we studied a design method for a broadband quasi-Yagi antenna (QYA) for terrestrial digital television (DTV) reception. The proposed antenna is composed of a dipole driver, a rectangular patch type director close to the dipole, and a ground reflector printed on an FR4 substrate. A balun between a microstrip line and a coplanar strip (CPS) line is a rectangular patch inserted along the center of the CPS. The end of the balun is connected to the CPS line through a shorting pin. An antenna, as an design example for the proposed antenna, is designed for the operation in the frequency band of 470-806 MHz for terrestrial DTV, and the characteristics of the designed antenna are examined. The antenna has a good performance such as a frequency band of 430-842 MHz for a voltage standing wave ratio < 2, a gain > 3.7 dBi, and a front-to-back ratio > 7.4 dB.

A Study on Bandwidth and Gain Enhancement of Series-fed Dipole Pair Antenna (직렬 급전 다이폴 쌍 안테나의 대역폭 및 이득 향상에 관한 연구)

  • Yeo, Junho;Lee, Jong-Ig
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.59-60
    • /
    • 2017
  • In this paper, the bandwidth and gain enhancement of a series-fed dipole pair antenna (SDPA) using a modified balun., a director, and two parasitic patches is studied. The proposed SDPA consists of two strip dipoles with different lengths, a ground reflector, which are connected through a coplanar strip line, a director, and two parasitic patches. The modified balun is used to increase the bandwidth, whereas the director and two parasitic patches are appended to the SDPA to enhance the gain in the middle and high frequency band. A prototype of the proposed SDPA is fabricated on an FR4 substrate, and the experimental results show that the antenna has a frequency band of 1.56-3.10 GHz for a VSWR < 2, and measured gain maintains over 7 dBi in the frequency range of 1.55-3.00 GHz.

  • PDF

Design of Double Dipole Quasi-Yagi Antenna with enhanced bandwidth and gain (대역폭과 이득이 향상된 이중 다이폴 준-야기 안테나 설계)

  • Yeo, Junho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.252-258
    • /
    • 2017
  • In this paper, the bandwidth and gain enhancement of a double-dipole quasi-Yagi antenna (DDQYA) using a modified balun and two directors is studied. The proposed DDQYA consists of two strip dipoles with different lengths, a ground reflector, which are connected through a coplanar strip line, and two directors. The modified balun is used to increase the bandwidth, whereas two directors are appended to the DDQYA to enhance the gain in the middle and high frequency band. The effects of the length and width of the first director on the antenna performance are analyzed, and final design parameters to obtain a gain over 7 dBi at 1.60-2.90 GHz band are obtained. A prototype of the proposed DDQYA is fabricated on an FR4 substrate, and the experimental results show that the antenna has a frequency band of 1.57-3.00 GHz for a VSWR < 2, and measured gain ranges 7.1-7.8 dBi at 1.60-2.90 GHz band.

Design of Broadband Planar Dipole Antenna for Indoor Digital TV Reception (실내 디지털 TV 수신용 광대역 평면 다이폴 안테나 설계)

  • Lee, Jong-Ig;Yeo, Junho;Park, Jin-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.497-502
    • /
    • 2014
  • In this paper, a design method for a broadband planar dipole antenna for terrestrial digital television (DTV) reception is studied. The dipole is modified to half bow-tie type for size reduction. The balun between feeding microstrip line and coplanar strip (CPS) line is implemented with a rectangular patch inserted along the center of the CPS line. The proposed antenna is the structure of dual resonances, one is due to the dipole and the other is due to the CPS line attached by the balun. The effects of various geometrical parameters on the antenna performance are examined, and the antenna is designed for terrestrial DTV band (470-806 MHz). The prototype antenna is fabricated on an FR4 substrate with a size of $95mm{\times}178mm$, and tested experimentally to verify the results of this study.

Design of a broadband half bow-tie dipole antenna for digital TV Reception (디지털 TV 수신용 광대역 반 보우타이 다이폴 안테나 설계)

  • Lee, Jong-Ig;Yeo, Junho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.61-62
    • /
    • 2013
  • In this paper, a design method for a compact broadband planar dipole antenna fed by a microstrip (MS) line is studied. The proposed broadband dipole is optimized for terrestrial digital television (DTV) receiving. The dipole is fed by an MS line with 75-ohm characteristic impedance on an FR4 substrate and its size is $90mm{\times}180mm$. The dipole is modified to half bow-tie type for size reduction. A simplified balun is adopted for the impedance matching between the MS line and coplanar strip which feeds the dipole. The optimized dipole antenna for DTV band (470-806 MHz) is fabricated on an FR4 substrate and tested experimentally to verify the results of this study.

  • PDF

Gain Enhancement of Series-fed Dipole Pair Antenna Using Director and Parasitic Patches (도파기와 기생 패치를 이용한 직렬-급전 다이폴 쌍 안테나의 이득 향상)

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.10
    • /
    • pp.1855-1861
    • /
    • 2017
  • In this paper, the gain enhancement of an SDPA using a director and two parasitic patches is studied. The modified balun is used to increase the bandwidth, whereas the director and two parasitic patches are appended to the SDPA to enhance the gain in the middle and high frequency bands. The effects of the distance between the director and parasitic patches on the antenna performance are analyzed, and the SDPA with a gain over 7 dBi at 1.54-2.99 GHz band is designed. The proposed SDPA is fabricated on an FR4 substrate with a dimension of $90mm(L){\times}135mm(W)$ in order to validate its performance. The fabricated antenna shows a frequency band of 1.56-3.10 GHz for a VSWR < 2, and it is confirmed by measurement that gain maintains over 7 dBi in the frequency range of 1.54-3.00 GHz.