• Title/Summary/Keyword: molecular chaperones

Search Result 84, Processing Time 0.029 seconds

Molecular Chaperones in Protein Quality Control

  • Lee, Suk-Yeong;Tsai, Francis T.F.
    • BMB Reports
    • /
    • v.38 no.3
    • /
    • pp.259-265
    • /
    • 2005
  • Proteins must fold into their correct three-dimensional conformation in order to attain their biological function. Conversely, protein aggregation and misfolding are primary contributors to many devastating human diseases, such as prion-mediated infections, Alzheimer's disease, type II diabetes and cystic fibrosis. While the native conformation of a polypeptide is encoded within its primary amino acid sequence and is sufficient for protein folding in vitro, the situation in vivo is more complex. Inside the cell, proteins are synthesized or folded continuously; a process that is greatly assisted by molecular chaperones. Molecular chaperones re a group of structurally diverse and mechanistically distinct proteins that either promote folding or prevent the aggregation of other proteins. With our increasing understanding of the proteome, it is becoming clear that the number of proteins that can be classified as molecular chaperones is increasing steadily. Many of these proteins have novel but essential cellular functions that differ from that of more 'conventional' chaperones, such as Hsp70 and the GroE system. This review focuses on the emerging role of molecular chaperones in protein quality control, i.e. the mechanism that rids the cell of misfolded or incompletely synthesized polypeptides that otherwise would interfere with normal cellular function.

TRAP1 regulation of mitochondrial life or death decision in cancer cells and mitochondria-targeted TRAP1 inhibitors

  • Kang, Byoung-Heon
    • BMB Reports
    • /
    • v.45 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • Hsp90 is one of the most conserved molecular chaperones ubiquitously expressed in normal cells and over-expressed in cancer cells. A pool of Hsp90 was found in cancer mitochondria and the expression of the mitochondrial Hsp90 homolog, TRAP1, was also elevated in many cancers. The mitochondrial pool of chaperones plays important roles in regulating mitochondrial integrity, protecting against oxidative stress, and inhibiting cell death. Pharmacological inactivation of the chaperones induced mitochondrial dysfunction and concomitant cell death selectively in cancer cells, suggesting they can be target proteins for the development of cancer therapeutics. Several drug candidates targeting TRAP1 and Hsp90 in the mitochondria have been developed and have shown strong cytotoxic activity in many cancers, but not in normal cells in vitro and in vivo. In this review, recent developments in the study of mitochondrial chaperones and the mitochondria-targeted chaperone inhibitors are discussed.

Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity

  • Park, Chang-Jin;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.31 no.4
    • /
    • pp.323-333
    • /
    • 2015
  • As sessile organisms, plants are exposed to persistently changing stresses and have to be able to interpret and respond to them. The stresses, drought, salinity, chemicals, cold and hot temperatures, and various pathogen attacks have interconnected effects on plants, resulting in the disruption of protein homeostasis. Maintenance of proteins in their functional native conformations and preventing aggregation of non-native proteins are important for cell survival under stress. Heat shock proteins (HSPs) functioning as molecular chaperones are the key components responsible for protein folding, assembly, translocation, and degradation under stress conditions and in many normal cellular processes. Plants respond to pathogen invasion using two different innate immune responses mediated by pattern recognition receptors (PRRs) or resistance (R) proteins. HSPs play an indispensable role as molecular chaperones in the quality control of plasma membrane-resident PRRs and intracellular R proteins against potential invaders. Here, we specifically discuss the functional involvement of cytosolic and endoplasmic reticulum (ER) HSPs/chaperones in plant immunity to obtain an integrated understanding of the immune responses in plant cells.

A Misfolded Thyroglobulin is Retained by Molecular Chaperones in the Endoplasmic Reticulum

  • Kwon, O-Yu;Seong, Yeon-Mun;Shong, Min-Bo
    • Journal of Life Science
    • /
    • v.9 no.1
    • /
    • pp.90-92
    • /
    • 1999
  • Deficient thyroglobulin is one of the important causes of congenital hypothyroid goiter with a prevalence of -1/40,000 humans. We now demonstrate that in cog/cog mice showing hypothyroidism, four endoplasmic reticulum-molecular chaperones stably bind to thyroglobulin, providing insight into physiologic regulation of endoplasmic reticulum storage diseases.

  • PDF

Possible Molecular Chaperones for Lipoprotein Lipase in Endoplasmic Reticulum

  • Yang, Jeong-Yeh;Kim, Mee-Ae;Koo, Bon-Sun;Kim, Sun-Mee;Park, Jin-Woo
    • BMB Reports
    • /
    • v.32 no.3
    • /
    • pp.311-316
    • /
    • 1999
  • Studies in adipocytes indicate that secretion of active lipoprotein lipase (LPL) was strictly regulated by a quality control system in the endoplasmic reticulum (ER). However, there has been no report about the ER chaperones participating in the folding and assembly of LPL. Many chaperones are known to bind unfolded proteins and dissociate from them through the ATP-hydrolyzing reaction. In this study, putative ER chaperones for LPL were determined by affinity chromatography using denatured LPL as an affinity ligand and elution with ATP. BiP, grp94, calreticulin, and another 50 kDa K-D-E-L protein in the ER of rat adipose tissue were bound to denatured LPL and eluted by ATP. Calnexin was bound to denatured LPL; however, it was not eluted by ATP but by acetic acid. These results indicate that, at least, BiP, grp94, calreticulin, calnexin, and the unidentified 50 kDa protein might act as putative chaperones for the proper folding and assembly of LPL in ER.

  • PDF

Family of Hsp70 Molecular Chaperones and Their Regulators (Hsp70 분자 샤페론과 조절인자)

  • Chung, Kyung-Tae
    • Journal of Life Science
    • /
    • v.17 no.12
    • /
    • pp.1760-1765
    • /
    • 2007
  • Proteins are involved in promoting or controlling virtually every event on which our lives depend. Proteins are synthesized in cytosol and in the endoplasmic reticulum where their synthesis machinery are tightly controlled. However, not all of newly synthesized proteins are survived and conduct their essential functions to maintain cell's lives. It was reported that one-third of synthesized proteins are rapidly destroyed by proteasome under the most physiological conditions. full-length translated proteins, which survived, must undergo proper folding and assemble process. Some proteins are spontaneously folded while others require molecular chaperones and folding enzymes to be properly folded. Molecular chaperones are ubiquitously present within the subcellular organelles and from bacteria to animals and plants. Among those members of Hsp70 family have been extensively studied and their regulators have been discovered in the last decade. Here, a brief overview is presented for functional mechanism of Hsp70 homologues and the roles of their regulators. Since biological function of Hsp70 family other than chaperonic function are expending the review would give basic understanding of partnership between Hsp70 family and their regulators.

Heat Shock Proteins as Molecular Chaperons in Neuropsychiatry (열충격 단백질의 신경정신의학적 의의와 중요성)

  • Oh, Dong-Hoon;Yang, Byung-Hwan;Choi, Joonho
    • Korean Journal of Biological Psychiatry
    • /
    • v.14 no.4
    • /
    • pp.221-231
    • /
    • 2007
  • Recent researches have shown that important cellular-based autoprotective mechanisms are mediated by heat-shock proteins(HSPs), also called 'molecular chaperones'. HSPs as molecular chaperones are the primary cellular defense mechanism against damage to the proteome, initiating refolding of denatured proteins and regulating degradation after severe protein damage. HSPs also modulate multiple events within apoptotic pathways to help sustain cell survival following damaging stimuli. HSPs are induced by almost every type of stresses including physical and psychological stresses. Our nervous system in the brain are more vulnerable to stress and damage than any other tissues due to HSPs insufficiency. The normal function of HSPs is a key factor for endogenous stress adaptation of neural tissues. HSPs play an important role in the process of neurodevelopment, neurodegeneration, and neuroendocrine regulation. The altered function of HSPs would be associated with the development of several neuropsychiatric disorders. Therefore, an understanding of HSPs activities could help to improve autoprotective mechanism of our neural system. This paper will review the literature related to the significance of HSPs in neuropsychiatric field.

  • PDF

Expression of Endoplasmic Reticulum Membrane Kinases by Thyroid Stimulating Hormone in the FRTL-5 Cells

  • Jin, Cho-Yi;Kwon, Ki-Sang;Han, Song-Yi;Goo, Tae-Won;Kwon, O-Yu
    • Biomedical Science Letters
    • /
    • v.14 no.1
    • /
    • pp.59-62
    • /
    • 2008
  • This experiment was performed to study the effect of TSH (thyroid-stimulating hormone) on the expression of endoplasmic reticulum (ER) chaperones in the rat thyrocytes FRTL-5 cells. Although the expressions of ER membrane kinases (ATF6, IRE1 and PERK) were specially enhanced under absence of TSH, no remarkable up- or down regulations of ER chaperones (BiP, CHOP and Calnexin) were detected by TSH. We firstly report here that TSH by dose up-regulated expression of ER membrane kinases in FRTL-5 culture thyrocytes.

  • PDF

Potential role of the histone chaperone, CAF-1, in transcription

  • Kim, Hye-Jin;Seol, Ja-Hwan;Cho, Eun-Jung
    • BMB Reports
    • /
    • v.42 no.4
    • /
    • pp.227-231
    • /
    • 2009
  • The eukaryotic genome forms a chromatin structure that contains repeating nucleosome structures. Nucleosome packaging is regulated by chromatin remodeling factors such as histone chaperones. The Saccharomyces cerevisiae H3/H4 histone chaperones, CAF-1 and Asf1, regulate DNA replication and chromatin assembly. CAF-1 function is largely restricted to non-transcriptional processes in heterochromatin, whereas Asf1 regulates transcription together with another H3/H4 chaperone, HIR. This study examined the role of the yeast H3/H4 histone chaperones, Asf1, HIR, and CAF-1 in chromatin dynamics during transcription. Unexpectedly, CAF-1 was recruited to the actively transcribed region in a similar way to HIR and Asf1. In addition, the three histone chaperones genetically interacted with Set2-dependent H3 K36 methylation. Similar to histone chaperones, Set2 was required for tolerance to excess histone H3 but not to excess H2A, suggesting that CAF-1, Asf1, HIR, and Set2 function in a related pathway and target chromatin during transcription.

Screening Molecular Chaperones Similar to Small Heat Shock Proteins in Schizosaccharomyces pombe

  • Han, Jiyoung;Kim, Kanghwa;Lee, Songmi
    • Mycobiology
    • /
    • v.43 no.3
    • /
    • pp.272-279
    • /
    • 2015
  • To screen molecular chaperones similar to small heat shock proteins (sHsps), but without ${\alpha}$-crystalline domain, heat-stable proteins from Schizosaccharomyces pombe were analyzed by 2-dimensional electrophoresis and matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Sixteen proteins were identified, and four recombinant proteins, including cofilin, NTF2, pyridoxin biosynthesis protein (Snz1) and Wos2 that has an ${\alpha}$-crystalline domain, were purified. Among these proteins, only Snz1 showed the anti-aggregation activity against thermal denaturation of citrate synthase. However, pre-heating of NTF2 and Wos2 at $70^{\circ}C$ for 30 min, efficiently prevented thermal aggregation of citrate synthase. These results indicate that Snz1 and NTF2 possess molecular chaperone activity similar to sHsps, even though there is no ${\alpha}$-crystalline domain in their sequences.