• Title/Summary/Keyword: molecular pathogenesis

Search Result 571, Processing Time 0.026 seconds

Mycoflora and Enzymatic Characterization of Fungal Isolates in Commercial Meju, Starter for a Korean Traditional Fermented Soybean Product

  • Baek, Jin-Ho;So, Kum-Kang;Ko, Yo-Han;Kim, Jung-Mi;Kim, Dae-Hyuk
    • Mycobiology
    • /
    • v.42 no.3
    • /
    • pp.291-295
    • /
    • 2014
  • Mycoflora was assessed in the commercial meju from four well-separated geographic origins. A total of 112 fungal isolates were identified by phenotypic characteristics and molecular taxonomy using sequencing the internal transcribed spacer of the rDNA and revealed 19 species from 13 genera. Enzymatic characteristics of protease and amylase, and mycotoxin production were analyzed.

Regulation of Pathogenesis by Light in Cercospora zeae-maydis: An Updated Perspective

  • Kim, Hun;Ridenour, John B.;Dunkle, Larry D.;Bluhm, Burton H.
    • The Plant Pathology Journal
    • /
    • v.27 no.2
    • /
    • pp.103-109
    • /
    • 2011
  • The fungal genus Cercospora is one of the most ubiquitous groups of plant pathogenic fungi, and gray leaf spot caused by C. zeae-maydis is one of the most widespread and damaging foliar diseases of maize in the world. While light has been implicated as a critical environmental regulator of pathogenesis in C. zeae-maydis, the relationship between light and the development of disease is not fully understood. Recent discoveries have provided new insights into how light influences pathogenesis and morphogenesis in C. zeae-maydis, particularly at the molecular level. This review is focused on integrating old and new information to provide an updated perspective of how light influences pathogenesis, and provides a working model to explain some of the underlying molecular mechanisms. Ultimately, a thorough molecular-level understanding of how light regulates pathogenesis will augment efforts to manage gray leaf spot by improving host resistance and disease management strategies.

First report of splenic myelolipoma in a Schnauzer in Colombia: a case report

  • Valentina Rueda-Garcia;Nicolas Carrillo-Godoy;Carlos Alberto Bonilla-Gutierrez;Alejandra Valdivieso-Valencia;Iang Schroniltgen Rondon-Barragan
    • Korean Journal of Veterinary Research
    • /
    • v.62 no.4
    • /
    • pp.28.1-28.4
    • /
    • 2022
  • Splenic myelolipoma is a rare tumor in dogs with an unclear origin. A male 13-year-old Schnauzer dog was presented because of a bump on the left side of the abdomen. Clinical examination and abdominal ultrasound revealed a mass in the spleen. A total splenectomy was carried out, and histopathology revealed a splenic myelolipoma. Before surgery, the patient showed high serum alanine aminotransferase levels, which returned to normal eight months after the resection. Unfortunately, the postoperative follow-up showed increased serum cholesterol and triglyceride levels, suggesting liver compromise. This is the first report of a splenic myelolipoma in Colombia.

Prevalence of infectious reproductive diseases in sows from Tolima-Colombia

  • Nicolas Carrillo-Godoy;Valentina Rueda-Garcia;Heinner Fabian Uribe-Garcia;Iang Schroniltgen Rondon-Barragan
    • Korean Journal of Veterinary Research
    • /
    • v.63 no.1
    • /
    • pp.4.1-4.5
    • /
    • 2023
  • The prevalence of some swine reproductive and zoonotic diseases in Colombia is unknown, making their management difficult. This study assessed the prevalence of porcine circovirus type 3 (PCV3), Leptospira interrogans, pseudorabies virus, and porcine gamma-herpesvirus by polymerase chain reaction in sows in the productive stage, from farms with a history of reproductive failures, at the department of Tolima. The prevalence of PCV3 was 2.6% and 12.6% for L. interrogans, with some samples co-infected with PCV2. Owing to the coinfections with PCV2, it is necessary to establish whether the interactions between these pathogens were related to the presence of reproductive problems.

Molecular Pathogenesis of Vibrio vulnificus

  • Gulig Paul A.;Bourdage Keri L.;Starks Angela M.
    • Journal of Microbiology
    • /
    • v.43 no.spc1
    • /
    • pp.118-131
    • /
    • 2005
  • Vibrio vulnificus is an opportunistic pathogen of humans that has the capability of causing rare, yet devastating disease. The bacteria are naturally present in estuarine environments and frequently contaminate seafoods. Within days of consuming uncooked, contaminated seafood, predisposed individuals can succumb to sepsis. Additionally, in otherwise healthy people, V. vulnificus causes wound infection that can require amputation or lead to sepsis. These diseases share the characteristics that the bacteria multiply extremely rapidly in host tissues and cause extensive damage. Despite the analysis of virulence for over 20 years using a combination of animal and cell culture models, surprisingly little is known about the mechanisms by which V. vulnificus causes disease. This is in part because of differences observed using animal models that involve infection with bacteria versus injection of toxins. However, the increasing use of genetic analysis coupled with detailed animal models is revealing new insight into the pathogenesis of V. vulnificus disease.

Distinct Molecular Mechanisms Characterizing Pathogenesis of SARS-CoV-2

  • Lee, Su Jin;Kim, Yu-Jin;Ahn, Dae-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.9
    • /
    • pp.1073-1085
    • /
    • 2022
  • The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has continued for over 2 years, following the outbreak of coronavirus-19 (COVID-19) in 2019. It has resulted in enormous casualties and severe economic crises. The rapid development of vaccines and therapeutics against SARS-CoV-2 has helped slow the spread. In the meantime, various mutations in the SARS-CoV-2 have emerged to evade current vaccines and therapeutics. A better understanding of SARS-CoV-2 pathogenesis is a prerequisite for developing efficient, advanced vaccines and therapeutics. Since the outbreak of COVID-19, a tremendous amount of research has been conducted to unveil SARS-CoV-2 pathogenesis, from clinical observations to biochemical analysis at the molecular level upon viral infection. In this review, we discuss the molecular mechanisms of SARS-CoV-2 propagation and pathogenesis, with an update on recent advances.

Delineating Transcription Factor Networks Governing Virulence of a Global Human Meningitis Fungal Pathogen, Cryptococcus neoformans

  • Jung, Kwang-Woo;Yang, Dong-Hoon;Maeng, Shinae;Lee, Kyung-Tae;So, Yee-Seul;Hong, Joohyeon;Choi, Jaeyoung;Byun, Hyo-Jeong;Kim, Hyelim;Bang, Soohyun;Song, Min-Hee;Lee, Jang-Won;Kim, Min Su;Kim, Seo-Young;Ji, Je-Hyun;Park, Goun;Kwon, Hyojeong;Cha, Sooyeon;Meyers, Gena Lee;Wang, Li Li;Jang, Jooyoung;Janbon, Guilhem;Adedoyin, Gloria;Kim, Taeyup;Averette, Anna K.;Heitman, Joseph;Cheong, Eunji;Lee, Yong-Hwan;Lee, Yin-Won;Bahn, Yong-Sun
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.05a
    • /
    • pp.59-59
    • /
    • 2015
  • Cryptococcus neoformans causes life-threatening meningoencephalitis in humans, but the treatment of cryptococcosis remains challenging. To develop novel therapeutic targets and approaches, signaling cascades controlling pathogenicity of C. neoformans have been extensively studied but the underlying biological regulatory circuits remain elusive, particularly due to the presence of an evolutionarily divergent set of transcription factors (TFs) in this basidiomycetous fungus. In this study, we constructed a high-quality of 322 signature-tagged gene deletion strains for 155 putative TF genes, which were previously predicted using the DNA-binding domain TF database (http://www.transcriptionfactor.org/). We tested in vivo and in vitro phenotypic traits under 32 distinct growth conditions using 322 TF gene deletion strains. At least one phenotypic trait was exhibited by 145 out of 155 TF mutants (93%) and approximately 85% of the TFs (132/155) have been functionally characterized for the first time in this study. Through high-coverage phenome analysis, we discovered myriad novel TFs that play critical roles in growth, differentiation, virulence-factor (melanin, capsule, and urease) formation, stress responses, antifungal drug resistance, and virulence. Large-scale virulence and infectivity assays in insect (Galleria mellonella) and mouse host models identified 34 novel TFs that are critical for pathogenicity. The genotypic and phenotypic data for each TF are available in the C. neoformans TF phenome database (http://tf.cryptococcus.org). In conclusion, our phenome-based functional analysis of the C. neoformans TF mutant library provides key insights into transcriptional networks of basidiomycetous fungi and ubiquitous human fungal pathogens.

  • PDF

Mass Spectrometry Imaging of Microbes

  • Yang, Hyojik;Goodlett, David R.;Ernst, Robert K.;Scott, Alison J.
    • Mass Spectrometry Letters
    • /
    • v.11 no.3
    • /
    • pp.41-51
    • /
    • 2020
  • Microbes influence many aspects of human life from the environment to health, yet evaluating their biological processes at the chemical level can be problematic. Mass spectrometry imaging (MSI) enables direct evaluation of microbial chemical processes at the atomic to molecular levels without destruction of valuable two-dimensional information. MSI is a label-free method that allows multiplex spatiotemporal visualization of atomic- or molecular-level information of microbial and microberelated samples. As a result, microbial MSI has become an important field for both mass spectrometrists and microbiologists. In this review, basic techniques for microbial MSI, such as ionization methods and analyzers, are explored. In addition, we discuss practical applications of microbial MSI and various data-processing techniques.

The Molecular Basis of Adenomyosis Development

  • Yang, Woo Sub;Lim, Jeong Mook;Ahn, Ji Yeon
    • Journal of Embryo Transfer
    • /
    • v.33 no.1
    • /
    • pp.49-54
    • /
    • 2018
  • Adenomyosis is a benign gynecological disease frequently affecting women of reproductive age. It has a negative impact on the quality of life, causing bleeding disorders, dysmenorrhea, chronic pelvic pain, and infertility. However, the molecular mechanisms involved in adenomyosis development remain unclear. This paper summarizes the reports found in the MEDLINE database on the molecular mechanisms involved in the development and progression of uterine adenomyosis. The literature search included the following terms: "adenomyosis," "adenomyoma," "pathogenesis," "molecular mechanisms," and "gynecological disorders." Only peer-reviewed, English-language journal articles were included. This review focuses on the molecular genetics, epigenetic modifications, and pivotal signaling pathways associated with adenomyosis development and progression, which will provide insights into and a better understanding of its underlying pathophysiology.