• Title/Summary/Keyword: molybdenum oxide

Search Result 73, Processing Time 0.027 seconds

Mo Powders Fabricated from MoO3 by Reduction in Hydrogen Gas

  • Hong, Seonghoon;Lee, Changsup;Oh, Changsup;Kil, Sangcheol;Kim, Yongha
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.6
    • /
    • pp.445-448
    • /
    • 2012
  • We studied the effect of temperature and reaction time by investigating the various temperatures and reaction times in the reduction of molybdenum oxide ($MoO_3$) to molybdenum (Mo) powder in hydrogen gas. We also studied the effect of the reaction of reduction according to the various hydrogen gas flow rates. We surveyed the reduction from molybdenum oxide to molybdenum powder in hydrogen gas and checked two temperature ranges, one from $400^{\circ}C$ to $600^{\circ}C$ and the other from $700^{\circ}C$ to $900^{\circ}C$. We found that the reaction ratio of molybdenum oxide increased with an increasing temperature and also increased with an increasing reaction time, but hydrogen gas did not influence the reduction ratio of molybdenum oxide. We examined molybdenum powders fabricated by ball milling for two hours, using with X-ray diffraction (XRD) and a scanning electron microscopy (SEM).

Indium Molybdenum Oxide 박막의 증착온도 변화에 따른 광학적 및 전기적 특성 연구

  • Jeon, Ji-A;O, Gyu-Jin;Kim, Eun-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.182.1-182.1
    • /
    • 2015
  • Transparent conducting oxides (TCOs)는 높은 투과율과 낮은 전기전도도를 갖고 있어 광다이오드, 태양전지 등 광소자에 적용하기 위해 많은 연구가 진행되어 왔다. 특히 Indium oxide 계열의 박막은 TCO 물질 중 하나로서 3.6 eV 의 wide bandgap을 가지고 있고, 높은 투과율과 낮은 전기 전도도 (< $10-3{\Omega}cm$)를 보여 다양한 응용이 가능해 오랫동안 연구 되어 지고 있다. 게다가 Indium oxide 계열의 박막은 낮은 가격과 화학적 안정성, 공정과정의 편의성 등 다양한 이점을 가지고 있어서 현재는 더 낮은 가격으로 생성해 더 높은 효율을 만드는데 관심이 집중되고 있다. 이러한 박막은 태양광 흡수층에서 생성되는 캐리어의 이동 및 외부 전극과의 접촉에서 발생하는 손실을 줄이기 위한 전극용 소재로 연구되어지고 있다. 본 연구에서는 Indium Molybdenum Oxide 박막을 Indium oxide와 Molybdenum 타겟을 이용하여 co-sputtering 방법으로 증착하였다. Indium molybdenum oxide 박막은 일정한 Mo 도핑농도와 일정한 Ar 개스 분압에서 다양한 기판온도 변화를 통해 증착하였다. 제작된 Indium molybdenum oxide 박막은 Hall Effect Measurement, Ultraviolet-Visible spectroscopy 및 X-Ray Diffraction (XRD) 등을 분석해 기판의 온도변화에 따른 전기비저항 및 광 투과도의 특성변화를 조사하였다.

  • PDF

Investigation of Molybdenum Oxide Thin Films for CIGS Applications

  • Bin, Jun-Hyeong;Park, Ju-Yeon;Gang, Yong-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.388-388
    • /
    • 2010
  • Molybdenum oxide thin films were deposited on p-type Si(100) by an RF magnetron sputtering method. The physical and chemical properties of these films were studied with X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques. The thickness of molybdenum oxide thin films was measured by spectroscopic ellipsometer (SE) and the thickness was about 200 nm. As the oxygen gas pressure increased, the thickness was decreased, the phases of the thin films were changed, and the amount of metallic Mo decreased but the contents of $Mo^{6+}$ species increases.

  • PDF

Synergistic Effect of Nitrogen and Molybdenum on Localized Corrosion of Stainless Steels

  • Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.20-28
    • /
    • 2010
  • According to the bipolar model, ion selectivity of some species in the passive film is important factor to control the passivation. An increase of cation selectivity of outer layer of the passive film can stabilize the film and improves the corrosion resistance. Therefore, the formation and roles of ionic species in the passive film should be elucidated. In this work, two types of solution (hydrochloric or sulfuric acid) were used to test high N and Mo-bearing stainless steels. The objective of this work was to investigate the formation of oxyanions in the passive film and the roles of oxyanions in passivation of stainless steel. Nitrogen exists as atomic nitrogen, nitric oxide, nitro-oxyanions (${NO_x}^-$), and N-H species, not nitride in the passive film. Because of its high mobility, the enriched atomic nitrogen can act as a reservoir. The formation of N-H species buffers the film pH and facilitates the formation of oxyanions in the film. ${NO_x}^-$ species improve the cation selectivity of the film, increasing the oxide content and film density. ${NO_x}^-$ acts similar to a strong inhibitor both in the passive film and at active sites. This facilitates the formation of chromium oxide. Also, ${NO_x}^-$ can make more molybdate and nitric oxide by reacting with Mo. The role of Mo addition on the passivation characteristics of stainless steel may differ with the test environment. Mo exists as metallic molybdenum, molybdenum oxide, and molybdate and the latter facilitates the oxide formation. When nitrogen and molybdenum coexist in stainless steel, corrosion resistance in chloride solutions is drastically increased. This synergistic effect of N and Mo in a chloride solution is mainly due to the formation of nitro-oxyanions and molybdate ion. Oxyanions can be formed by a 'solid state reaction' in the passive film, resulting in the formation of more molybdate and nitric oxide. These oxyanions improve the cation selectivity of the outer layer and form more oxide and increase the amount of chromium oxide and the ratio of $Cr_2O_3/Cr(OH)_3$ and make the film stable and dense.

Improvement of source-drain contact properties of organic thin-film transistors by metal oxide and molybdenum double layer

  • Kim, Keon-Soo;Kim, Dong-Woo;Kim, Doo-Hyun;Kim, Hyung-Jin;Lee, Dong-Hyuck;Hong, Mun-Pyo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.270-271
    • /
    • 2008
  • The contact resistance between organic semiconductor and source-drain electrode in Bottom Contact Organic Thin-Film Transistors (BCOTFTs) can be effectively reduced by metal oxide/molybdenum double layer structure; metal oxide layers including nickel oxide (NiOx/Mo) and moly oxide(MoOx) under molybdenum work as a high performance carrier injection layer. Step profiles of source-drain electrode can be easily achieved by simultaneous etching of the double layers using the difference etching rate between metal oxides and metal layers.

  • PDF

Surface characteristics of Molybdenum Oxide Films Prepared by Oxidation Thermal Treatment Method (산화 열처리법에 의해 제작된 산화 몰리브데늄 박막의 표면특성 고찰)

  • Kim, Sang-Gon;Sung, Youl-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.3
    • /
    • pp.57-62
    • /
    • 2014
  • In this work, molybdenum oxide films were fabricated by heat-treatment method. Fundamental surface characteristics of molybdenum oxide films were investigated using XRD and Raman spectroscopy. From the results, the optimum MoOx films could be obtained under the conditions of thermal treatment temperature of $550^{\circ}C$, oxidation time of 30 minutes and oxygen flow rate of 250sccm. The thermal treatment method offers a simple and effective route for the synthesis of uniform $MoO_3$ films.

Study of Hydrogen Evolution Reaction by Molybdenum Oxide Doped TiO2 Nanotubes (몰리브덴 산화물이 도핑된 티타늄 나노튜브전극의 수소 발생 반응 연구)

  • Oh, Kiseok;Yoo, Hyeonseok;Lee, Gibaek;Choi, Jinsub
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.6
    • /
    • pp.521-529
    • /
    • 2016
  • In this study, titanium nanotubes, prepared by anodization method, showing high surface and strong chemical stability in acidic and basic media, have been employed for the application to the electrodes for water splitting in KOH solution. Due to its high polarization resistance of $TiO_2$ itself, proper catalysts are essentially required to reduce overpotentials for water oxidation and reduction. Most of academic literature showed noble metal catalysts for foreign dopants in $TiO_2$ electrodes. From commercialization point of view, screening of low-cost catalyst is important. Herein, we propose molybdenum oxide as low-cost catalysts among various catalysts tested in the experiments, which exhibits the highest performance for hydrogen evolution reaction in highly alkaline solution. We showed that molybdenum oxide doped electrode can be operated in extreme acidic and basic conditions as well.

XPS Study of MoO3 Interlayer Between Aluminum Electrode and Inkjet-Printed Zinc Tin Oxide for Thin-Film Transistor

  • Choi, Woon-Seop
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.6
    • /
    • pp.267-270
    • /
    • 2011
  • In the process of inkjet-printed zinc tin oxide thin-film transistor, the effect of metallic interlayer underneath of source and drain electrode was investigated. The reason for the improved electrical properties with thin molybdenum oxide ($MoO_3$) layer was due to the chemically intermixed state of metallic interlayer, aluminum source and drain, and oxide semiconductor together. The atomic configuration of three Mo $3d_3$ and $3d_5$ doublets, three different Al 2p core levels, two Sn $3d_5$, and four different types of oxygen O 1s in the interfaces among those layers was confirmed by X-ray photospectroscopy.

Synthesis and reactivity over molybdenum carbide crystallites

  • Choi, Jeong-Gil
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.2
    • /
    • pp.74-79
    • /
    • 2010
  • The synthesis and reactivities of molybdenum carbide crystallites were examined in this study. Especially, the effect of synthesis conditions were scrutinized on the preparation of molybdenum carbide crystallites. In order to perform this purpose, various characterization techniques such as BET surface area and oxygen uptake measurements were employed for the synthesized molybdenum carbide crystallites. First of all, the molybdenum carbide crystallites were synthesized using molybdenum oxide crystallites and methane gas or methane-hydrogen mixture. The experimental results showed that BET surface areas ranged from $7.4m^2/g$ to $31m^2/g$ and oxygen uptake values varied from $8.1{\mu}mol/g$ to $24.3{\mu}mol/g$. The Mo compounds were found to be active for ammonia decomposition reaction. Even though there are some molybdenum carbide crystallites that were exceeded by Pt/$Al_2O_3$ crystallite, the steady state reactivities for other molybdenum carbide crystallites were comparable to or even higher than that determined for the Pt/$Al_2O_3$ crystallite. These results implied that molybdenum carbide crystallites could be one of the promising crystallites that might be substitutes for Pt-like noble metal crystallites in the petroleum processes.