• Title/Summary/Keyword: moment generating function

Search Result 56, Processing Time 0.024 seconds

Further Results Involving the $NBU_{mgf}$ Class of Life Distributions

  • Elbatal I.
    • International Journal of Reliability and Applications
    • /
    • v.7 no.1
    • /
    • pp.13-25
    • /
    • 2006
  • A new class of life distributions is studied. This class is defined based on comparing the residual life time to the whole life in the moment generating function order giving 'the new better than used in the moment generating function order ageing class $(NBU_{mgf})$'. Fundamental properties of this class are given including some closure properties and characterizations. Finally, we consider new results about comparisons of age and block replacement policies when the underlying distribution belongs to $NBU_{mgf}$ aging classes.

  • PDF

A Class of Bivariate Linear Failure Rate Distributions and Their Mixtures

  • Sarhan, Ammar M.;El-Gohary, A.;El-Bassiouny, A.H.;Balakrishnan, N.
    • International Journal of Reliability and Applications
    • /
    • v.10 no.2
    • /
    • pp.63-79
    • /
    • 2009
  • A new bivariate linear failure rate distribution is introduced through a shock model. It is proved that the marginal distributions of this new bivariate distribution are linear failure rate distributions. The joint moment generating function of the bivariate distribution is derived. Mixtures of bivariate linear failure rate distributions are also discussed. Application to a real data is given.

  • PDF

Some Results About $NBU_{mgf}$ Class of Life Distributions

  • Ahmad, I.A.;Kayid, M.
    • International Journal of Reliability and Applications
    • /
    • v.5 no.4
    • /
    • pp.155-162
    • /
    • 2004
  • A new class of life distributions is studied. This class is defined based on comparing the residual life to the whole life in the moment generating function order giving "the new better than used in the moment generating function order ageing class ($NBU_{mgf}$)". Some new results of this class are given including some closere properties and characterizations. Finally testing exponentially against the $NBU_{mgf}$ class is also addressed.

  • PDF

ON THE ALMOST SURE CONVERGENCE OF WEIGHTED SUMS OF NA RANDOM VARIABLES

  • Kim, T.S.;Ko, M.H.;Lee, Y.M.;Lin, Z.
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.1
    • /
    • pp.99-106
    • /
    • 2004
  • Let {X, $X_{n}, n\;{\geq}\;1$} be a sequence of identically distributed, negatively associated (NA) random variables and assume that $│X│^{r}$, r > 0, has a finite moment generating function. A strong law of large numbers is established for weighted sums of these variables.

New generalized inverse Weibull distribution for lifetime modeling

  • Khan, Muhammad Shuaib;King, Robert
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.2
    • /
    • pp.147-161
    • /
    • 2016
  • This paper introduces the four parameter new generalized inverse Weibull distribution and investigates the potential usefulness of this model with application to reliability data from engineering studies. The new extended model has upside-down hazard rate function and provides an alternative to existing lifetime distributions. Various structural properties of the new distribution are derived that include explicit expressions for the moments, moment generating function, quantile function and the moments of order statistics. The estimation of model parameters are performed by the method of maximum likelihood and evaluate the performance of maximum likelihood estimation using simulation.

Performance Analysis of Space-Time Codes in Realistic Propagation Environments: A Moment Generating Function-Based Approach

  • Lamahewa Tharaka A.;Simon Marvin K.;Kennedy Rodney A.;Abhayapala Thushara D.
    • Journal of Communications and Networks
    • /
    • v.7 no.4
    • /
    • pp.450-461
    • /
    • 2005
  • In this paper, we derive analytical expressions for the exact pairwise error probability (PEP) of a space-time coded system operating over spatially correlated fast (constant over the duration of a symbol) and slow (constant over the length of a code word) fad­ing channels using a moment-generating function-based approach. We discuss two analytical techniques that can be used to evaluate the exact-PEPs (and therefore, approximate the average bit error probability (BEP)) in closed form. These analytical expressions are more realistic than previously published PEP expressions as they fully account for antenna spacing, antenna geometries (uniform linear array, uniform grid array, uniform circular array, etc.) and scattering models (uniform, Gaussian, Laplacian, Von-mises, etc.). Inclusion of spatial information in these expressions provides valuable insights into the physical factors determining the performance of a space-time code. Using these new PEP expressions, we investigate the effect of antenna spacing, antenna geometries and azimuth power distribution parameters (angle of arrival/departure and angular spread) on the performance of a four-state QPSK space-time trellis code proposed by Tarokh et al. for two transmit antennas.

Performance Analysis of the Flexible Manufacturing System According to the Strategy of Material Handling System Using Moment Generating Function Based Approach (모멘트 생성 함수 기법을 이용한 물류 운반 시스템 이용에 따른 유연 생산 시스템의 성능 해석)

  • 양희구;김종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1186-1190
    • /
    • 1995
  • This paper is focused on the formulation of explicit closed-form functions describing the performance measures of the general flexible manufacturing system (FMS)according to the strategy of material handling system(MHS). the performance measures such as the production rate, the production lead-time and the utilization rate of the general FMS are expressed, respectively, as the explicit closed-form functions of the part processing time, the service rate of the material handling system (MHS) and the number of machine tools in the FMS. For this, the gensral FMS is presented as a generalized stochastic Petri net model, then, the moment generating function (MGF) based approach is applied to obtain the steady-state probabity formulation. Based on the steady-state formulation, the explicit closed-form functions for performance measures of the probability FMS can be obtained. Finally, the analytical results are compared with the Petri net simulation results to verify the validity of the suggested method. The paper is of significance in the sense that it provides a comprehensive formula for performance measures of the FMS even to the industry engineers and academic reademic resuarchers who have no background on Markov chain analysis method or Petrinet modeling

  • PDF

SOME GENERALIZED GAMMA DISTRIBUTION

  • Nadarajah Saralees;Gupta Arjun K.
    • Journal of the Korean Statistical Society
    • /
    • v.36 no.1
    • /
    • pp.93-109
    • /
    • 2007
  • Gamma distributions are some of the most popular models for hydrological processes. In this paper, a very flexible family which contains the gamma distribution as a particular case is introduced. Evidence of flexibility is shown by examining the shape of its pdf and the associated hazard rate function. A comprehensive treatment of the mathematical properties is provided by deriving expressions for the nth moment, moment generating function, characteristic function, Renyi entropy and the asymptotic distribution of the extreme order statistics. Estimation and simulation issues are also considered. Finally, a detailed application to drought data from the State of Nebraska is illustrated.

Stationary analysis of the surplus process in a risk model with investments

  • Lee, Eui Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.4
    • /
    • pp.915-920
    • /
    • 2014
  • We consider a continuous time surplus process with investments the sizes of which are independent and identically distributed. It is assumed that an investment of the surplus to other business is made, if and only if the surplus reaches a given sufficient level. We establish an integro-differential equation for the distribution function of the surplus and solve the equation to obtain the moment generating function for the stationary distribution of the surplus. As a consequence, we obtain the first and second moments of the level of the surplus in an infinite horizon.