• Title/Summary/Keyword: monolithic sorbent

Search Result 2, Processing Time 0.017 seconds

Optimization of Synthesis Condition of Monolithic Sorbent Using Response Surface Methodology (반응 표면 분석법을 이용한 일체형 흡착제의 합성 조건 최적화)

  • Park, Ha Eun;Row, Kyung Ho
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.299-304
    • /
    • 2013
  • A 17-run Box-Behnken design was used to optimize the synthesis conditions of a monolithic sorbent. The effects of the amount of monomer (mL), crosslink (mL) and porogen (mL) were investigated. The experimental data were fitted to a second-order polynomial equation by the multiple regression analysis and examined using statistical methods. The adjusted coefficient of determination ($R^2$) of the model was 0.9915. The probability value (p < 0.0001) demonstrated a high significance for the regression model. A mean amount of polymer as 2120.15 mg was produced under the following optimum synthesis conditions: the optimized volumes of monomer, crosslink and porogen are 0.30, 1.40, and 1.47 mL, respectively. This was in good agreement with the predicted model value.

Analysis of volatile aroma compounds from vanilla perfume using headspace disk type monolithic material sorptive extraction (시료상층부 원판 형태 단일 다공성 물질을 이용한 바닐라 향수의 휘발성 아로마 성분 추출 분석)

  • Son, Hyun-Hwa;Lee, Dong-Sun
    • Analytical Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.421-428
    • /
    • 2011
  • In this study, headspace disk type monolithic material sorptive extraction (HS-MMSE) was developed, validated and applied to the analysis of volatile aroma compounds from vanilla perfume by gas chromatography -mass spectrometry (GC/MS). HS-MMSE uses monolithic material (MonoTrap) based on silica bonded with octadecyl silane (ODS) and activated carbon as a sorbent. Aroma compounds was adsorbed onto the MonoTrap in headspace and extracted by only 100 ${\mu}L$ of solvent. Total 12 volatile compounds from vanilla perfume were successfully analyzed using HS-MMSE. The influence of extractive parameters was investigated and optimized, using benzyl acetate, linalyl acetate, vanillin, ethyl vanillin as target compounds. Under the optimum condition, the limit of detection (S/N = 3) and the limit of quantification (S/N = 10) of proposed method for the target compounds were obtained within the range of 8.35~13.76 ng and 27.82~45.88 ng, respectively. The method showed good linearity with correlation coefficient more than 0.9888, satisfactory recovery and reproducibility. These results showed that HS-MMSE using disk type MonoTrap is a new promising technique for the analysis of volatile aroma compounds from vanilla perfume.