• Title/Summary/Keyword: multirate digital fuzzy control

Search Result 10, Processing Time 0.024 seconds

Multirate Digital Control for Fuzzy Systems: LMI-Based Design and Stability Analysis

  • Kim Do-Wan;Park Jin-Bae;Joo Young-Hoon;Kim Sung-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.506-515
    • /
    • 2006
  • This paper studies an intelligent digital control for nonlinear systems with multirate sampling. It is worth noting that the multirate control design is addressed for a given nonlinear system represented by Takagi-Sugeno (T-S) fuzzy models. The main features of the proposed method are that i) it is provided that the sufficient conditions for stabilization of the discrete-time T-S fuzzy system in the sense of Lyapunov stability criterion, which is can be formulated in the linear matrix inequalities (LMIs); and ii) the stability properties of the trivial solution of the digital control system can be deduced from that of the solution of its discretized versions. An example is provided for showing the feasibility of the proposed method.

Improved Digital Redesign for Fuzzy Systems: Compensated Bilinear Transform Approach

  • Kim, Do-Wan;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.765-770
    • /
    • 2005
  • This paper presents a new intelligent digital redesign (IDR) method via the compensated bilinear transformation to design the digital controller such that the digital fuzzy system is equivalent to the analog fuzzy system in the sense of the state-matching. This paper especially consider a multirate control scheme with a predictive feature, where the digital control input is held constant N times between the sampling points. More precisely, the multirate control scheme is proposed that utilizes a numerical integration scheme to approximately predict the current state from the state measured at the sampling points, the delayed measurements. For this system, the IDR conditions incorporated with stabilizability in the format of the linear matrix inequalities (LMIs) are derived. The superiority of the proposed technique is convincingly visualized through a numerical example.

Multirate Control of Sampled-Data Fuzzy System (샘플치 데이터 퍼지 시스템의 다중레이트 제어기)

  • Kim, Do-Wan;Park, Jin-Bae;Jang, Kwon-Kyu;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2543-2545
    • /
    • 2004
  • In this paper, a new multirate digital control technique for the Takagi-Sugeno (T-S) fuzzy system is suggested. The proposed method takes account of the stabilizablity of the discrete-time T-S fuzzy system at the fast-rate sampling points. Our main idea is to utilize the lifted control input. The proposed approach is to obtain the multirate discrete-time T-S fuzzy system by discretizing the overall dynamics of the T-S fuzzy system with the lifted control, and then to derive the sufficient conditions for the stabilization in the sense of the Lyapunov asymptotic stability for this system. An example is provided for showing the feasibility of the proposed discretization method.

  • PDF

Intelligent Digital Redesign of Biodynamic Model of HIV-1 (HIV-1 바이오 동역학 모델의 지능형 디지털 재설계)

  • Kim Do-Wan;Joo Young-Hoon;Park Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.547-553
    • /
    • 2006
  • This paper studies digital control of biodynamic model of HIV-1 via intelligent digital redesign (IDR). The purpose of the IDR is to develop an equivalent digital fuzzy controller maintaining the satisfactory performance of an existing continuous-time fuzzy controller in the sense of the state-matching. Some conditions for the stability as well as the global state-matching are provided.. They are given by the form of the linear matrix inequalities (LMIs) and thereby easily tractable by the convex optimization techniques. The main features of the proposed method are that 1) the generalized control scheme is provided for the multirate as well as the single-rate digital controllers; 2) a new compensated block-pulse function method is applied to closely match the states of the continuous-time and the sampled-data fuzzy systems in the discrete-time domain; 3) the two-step procedure of IDR is presented to prevent the performance degradation caused by the additional stability conditions. The applicability of the proposed approach is shown through the biodynamic model of HIV-1.

Intelligent Digital Decentralized Control System for Smart Space (스마트 스페이스 구축을 위한 지능형 디지털 분산 제어 시스템 개발)

  • Joo, Young-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.1
    • /
    • pp.54-59
    • /
    • 2006
  • The smart space is composed of the wire and/or wireless network, multi-sensor-based environment, and many various controllers. For the smart space, this paper presents a new design method of multirate digital decentralized controller using the intelligent digital redesign technique. In specific, the proposed method is based on the delta-operator and the multirate sampling and takes the form of the LMIs. To shows the feasibility of the suggested method, the computer simulations for Heating, ventilating, and ai. conditioning (HVAC) system are provided.

LMI-Based Intelligent Digital Redesign for Multirate Sampled-Data Fuzzy Systems

  • Kim, Do-Wan;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.1
    • /
    • pp.113-118
    • /
    • 2006
  • This paper presents a new linear-matrix-inequality-based intelligent digital redesign (LMI-based IDR) technique to match the states of the analog and the digital T-S fuzzy control systems at the intersampling instants as well as the sampling ones. The main features of the proposed technique are: 1) the affine control scheme is employed to increase the degree of freedom; 2) the fuzzy-model-based periodic control is employed, and the control input is changed n times during one sampling period; 3) The proposed IDR technique is based on the approximately discretized version of the T-S fuzzy system, but its discretization error vanishes as n approaches the infinity. 4) some sufficient conditions involved in the state matching and the stability of the closed-loop discrete-time system can be formulated in the LMIs format.

Digital Control for Takagi-Sugeno Fuzzy System with Multirate Sampling

  • Kim, Do Wan;Joo, Young Hoon;Park, Jin Bae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.199-204
    • /
    • 2004
  • In this paper, a new dual-rate digital control technique for the Takagi-Sugeno (T-S) fuzzy system is suggested. The proposed method takes account of the stabilizablity of the discrete-time T-S fuzzy system at the fast-rate sampling points. Our main idea is to utilize the lifted control input. The proposed approach is to obtain the dual-rate discrete-time T-S fuzzy system by discretizing the overall dynamics of the T-S fuzzy system with the lifted control, and then to derive the sufficient conditions for the stabilization in the sense of the Lyapunov asymptotic stability for this system. An example is provided for showing the feasibility of the proposed discretization method.

Intelligent Digital Redesign Via Complete State-Matching (완벽한 상태정합을 이용한 지능형 디지털 재설계)

  • Kim, Do-Wan;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.276-278
    • /
    • 2006
  • In this paper, a complete solution to fuzzy-model-based digital redesign problem (IDR) for sampled-data nonlinear systems is presented, The term of intelligent digital redesign (IDR) is to design a digital fuzzy controller such that the sampled-data closed-loop fuzzy system is equivalent to the continuous-time closed-loop fuzzy system using the state matching, Its solution is simply obtained by linear transformation, Under the proposed sampled-data controller, the states of the sampled-data and continuous-time fuzzy system are completely matched at every sampling points.

  • PDF

An Improved LMI-Based Intelligent Digital Redesign Using Compensated Bilinear Transform (보상된 bilinear 변환을 이용한 향상된 LMI 기반 지능형 디지털 재설계)

  • Kim, Do-Wan;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.91-94
    • /
    • 2005
  • This paper presents a new linear- matrix- inequality- basedintelligent digital redesign (LMI-based IDR) technique to match he states of the analog and the digital control systems at the intersampling instants as well as the sampling ones. The main features of the proposed technique are: 1) the multirate control is employed, and the control input is changed N times during one sampling period; 2) The proposed IDR technique is based on the compensated bilinear transformation.

  • PDF

Multirate Control of Takagi-Sugeno Fuzzy System

  • Kim, Do-Wan;Park, Jin-Bae;Joo, Young-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.672-677
    • /
    • 2004
  • In this paper, a new dual-rate digital control technique for the Takagi-Sugeno (T-S) fuzzy system is suggested. The proposed method takes account of the stabilizablity of the discrete-time T-S fuzzy system at the fast-rate sampling points. Our main idea is to utilize the lifted control input. The proposed approach is to obtain the dual-rate discrete-time T-S fuzzy system by discretizing the overall dynamics of the T-S fuzzy system with the lifted control, and then to derive the sufficient conditions for the stabilization in the sense of the Lyapunov asymptotic stability for this system. An example is provided for showing the feasibility of the proposed discretization method.

  • PDF