• Title/Summary/Keyword: muscular deformation

Search Result 8, Processing Time 0.022 seconds

Discrimination of Motions with Physical Deformation of Muscles and EMG

  • Unkawa, Taksshi;Iida, Takeo
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.04a
    • /
    • pp.109-112
    • /
    • 2000
  • The purpose of the present study is to evaluate the basic upper-limb involved in products manipulation. Upper-limb muscular deformations and electromyography (EMG) measurements are used as indexes for estimated motion: hand opening and closing, wrist extending and flexing, pronation and supination, grasping conditions. Measured values are analyzed by multivariate analysis and a regression equation is obtained for estimating the characteristics of upper-limb performance. Muscular deformation is defined as a change in shape, such as a pressure changes when the hand or wrist moves. hand opening and closing can be discriminated at a higher percentage of accuracy by muscular deformation data than by EMG data. Muscular deformation measurements using air-pack pressure sensors were verified to be effective in motion estimation applications.

  • PDF

A Biomechanical Modeling of Human Pharyngeal Muscular Dysfunction by Using FEM(Finite Element Method) (유한요소법을 이용한 인두의 기능이상에 대한 생체역학적 모델)

  • Kim Sung Jae;Bae Ha Suk;Choi Byeong Cheol;Kim Sung Min
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.6 s.81
    • /
    • pp.515-522
    • /
    • 2003
  • Pharynx is a system transporting foods by peristaltic motion(contraction and expansion movement! into the esophagus and functioning as airway passages. In this study, structural changes of pharyngeal dysfunction are analyzed by biomechanical model using CT and FEM(finite clement method). Loading condition was assumed that equal pressure was loaded sequentially to inside of pharyngeal tissue. In order to analyze the pharyngeal muscular dysfunction by biomechanical model. the pharyngeal dysfunctions was classified into 3 cases. Taking into account the clinical complication by neuromuscular symptoms such as pharyngeal dysfunction after stroke. we assumed that a change of material property is caused by muscular tissue stiffness. A deformation of cross sectional area of the pharynx is analyzed increasing the stiffness $25\%,\;50\%,\;75\%$ in each case on the basis of stress-strain relationship. Based on three-dimensional reconstruction of pharyngeal structure using limited factor - techniques and the optimization procedure by means of inverse dynamic approach. the biomechanical model of the human pharynx is implemented. The results may be used as clinical index illustrating the degree of pharyngeal muscular dysfunction. This study may be used as useful diagnostic model in discovering early deglutitory impediment caused by physiological or pathological pharyngeal dysfunction.

A Study on the Load and Deformation of Race Carbon Bicycle Frame for Improved Athletic Performance (경기력 향상을 위한 경주용 탄소 자전거 프레임의 하중과 변형에 관한 연구)

  • Choi, Ung Jae;Choi, Seung Ho;Kim, Yong Sun;Yun, Seong Min;Kim, Hong Gun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.46-51
    • /
    • 2019
  • As the industry develops and quality of life increases, the concept of leisure is also changing. Bicycling is a healthy sport for exercising while enjoying nature, facilitating the enjoyment of a healthy life. As a result, the awareness surrounding bicycles has increased, and so has the interest in lighter and more luxurious carbon bikes. The number of domestic companies producing carbon bicycles frames is nil. In this study, we analyze the frames of existing foreign brands and analyze the deformation and stress concentration area according to the load of the frame, using the finite element analysis. In addition, we set up the range of stiffness based on the content of the structural analysis, to localize the carbon bicycle frame and famous foreign products, and compare the prototype with the stiffness by using bicycle molds for track races.

THE THREE DIMENSIONAL FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION AND DEFORMATION IN MANDIBLE ACCORDING TO THE POSITION OF PONTIC IN TWO IMPLANTS SUPPORTED THREE-UNIT FIXED PARTIAL DENTURE (두 개의 임플란트를 이용한 3본 고정성 국소의치에서 가공치 위치에 따른 하악골에서의 응력 분포 및 변형에 관한 삼차원 유한요소법적 연구)

  • Kim, Dong-Su;Kim, Il-Kyu;Jang, Keum-Soo;Park, Tae-Hwan;Kim, Kyu-Nam;Son, Choong-Yul
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.2
    • /
    • pp.166-179
    • /
    • 2008
  • Excessive concentration of stress which is occurred in occlusion around the implant in case of the implant supported fixed partial denture has been known to be the main cause of the crestal bone destruction. Therefore, it is essential to evaluate the stress analysis on supporting tissue to get higher success rates of implant. The purpose of this study was to evaluate the effects of stress distribution and deformation in 3 different types of three-unit fixed partial denture sup-ported by two implants, using a three dimensional finite element analysis in a three dimensional model of a whole mandible. A mechanical model of an edentulous mandible was generated from 3D scan, assuming two implants were placed in the left premolars area. According to the position of pontic, the experiments groups were divided into three types. Type I had a pontic in the middle position between two implants, type II in the anterior posi-tion, and type III in the posterior position. A 100-N axial load was applied to sites such as the central fossa of anterior and posterior implant abutment, central fossa of pontic, the connector of pontic or the connector between two implants, the mandibular boundary conditions were modeled considering the real geometry of its four-masticatory muscular supporting system. The results obtained from this study were as follows; 1. The mandible deformed in a way that the condyles converged medially in all types under muscular actions. In comparison with types, the deformations in the type II and type III were greater by 2-2.5 times than in the type I regardless of the loading location. 2. The values of von Mises stresses in cortical and cancellous bone were relatively stable in all types, but slightly increased as the loading position was changed more posteriorly. 3. In comparison with type I, the values of von Mises stress in the implant increased by 73% in Type II and by 77% in Type III when the load was applied anterior and posterior respectively, but when the load was applied to the middle, the values were similar in all types. 4. When the load was applied to the centric fossa of pontic, the values of von Mises stress were nearly $30{\sim}35%$ higher in the type III than type I or II in the cortical and cancellous bone. Also, in the implant, the values of von Mises stress of the type II or III were $160{\sim}170%$ higher than in the type I. 5. When the load was applied to the centric fossa of implant abutment, the values of von Mises stress in the cortical and cancellous bone were relatively $20{\sim}25%$ higher in the type III than in the other types, but in the implant they were 40-45% higher in the type I or II than in the type III. According to the results of this study, musculature modeling is important to the finite element analysis for stress distribution and deformation as the muscular action causes stress concentration. And the type I model is the most stable from a view of biomechanics. Type II is also a clinically accept-able design when the implant is stiff sufficiently and mandibular deformation is considered. Considering the high values of von Mises stress in the cortical bone, type III is not thought as an useful design.

Diagnosis and treatment of positional plagiocephaly

  • Jung, Bok Ki;Yun, In Sik
    • Archives of Craniofacial Surgery
    • /
    • v.21 no.2
    • /
    • pp.80-86
    • /
    • 2020
  • Positional plagiocephaly is increasing in infants. Positional plagiocephaly is an asymmetric deformation of skull due to various reasons; first birth, assisted labor, multiple pregnancy, prematurity, congenital muscular torticollis and position of head. Positional plagiocephaly can mostly be diagnosed clinically and by physical examinations. The simplest way to assess the severity of plagiocephaly is to use a diagonal caliper during physical examination, which measures the difference between the diagonal lengths on each side of the head. Plagiocephaly can be treated surgically or conservatively. Positional plagiocephaly, which is not accompanied by craniosynostosis, is treated conservatively. Conservative treatments involve a variety of treatments, such as change of positions, physiotherapy, massage therapy, and helmet therapy. Systematic approaches to clinical examination, diagnosis and treatment of positional plagiocephaly can be necessary and the age-appropriate treatment is recommended for patients with positional plagiocephaly.

Cadmium Toxicity on the Survival Rate and Activity of the Equilateral Venus, Gomphina veneriformis (Bivalvia: Veneridae) (대복 (Gomphina veneriformis)의 생존 및 운동성에 미치는 카드뮴 (cd)의 독성)

  • PARK Jung Jun;LEE Jung Sick
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.5
    • /
    • pp.463-468
    • /
    • 2003
  • This study observed change of survival rate, activity and foot structure of the equilateral venus (Gomphina veneriformis) exposed to cadmium. Survival rate and activity of the clam exposed to cadmium was reduced with increase of exposure duration and concentration. Change of survival rate and activity was observed in the early exposure time (7 days) in the condition of above 1 77 mg/L and 0.88 mg/L, respectively. Activity reduction of the clam exposed to cadmium seems to be caused by epidermal layer deformation, muscle fiber fragmentation and muscular layer collapse of the foot.

Interpretation and Generalization by Neuroscience and Material Mechanics on Deviation in Temporomandibular Joint Balancing Medicine (턱관절균형의학에서 편차발생현상의 신경과학 및 재료역학적 해석과 일반화)

  • Gyoo-yong Chi
    • Journal of TMJ Balancing Medicine
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • Objectives: For the deviation phenomenon occurring during the treatment process in temporo-mandibular balancing medicine (TBM), hypotheses were established regarding the cause and mechanism of formation from the perspective of neuro-science and material mechanics, and a verification method was proposed. Methods: The deviation phenomenon was theoretically analyzed based on the structure theories of material mechanics of the joint and the neurological pain mechanism. Results: Deviation occurs due to temporary yield by the accumulation of heterogeneous stress in the temporo-mandibular joint and the affected joint. Because the joint structures are corresponding with material mechanics showing compressive and tensile properties. The size of the deviation is expressed in terms of strain. The occlusal surface of the teeth is level with the axial joint. Since the magnitude of the deviation has a proportional relationship with the degree of abnormality of the temporo-mandibular joint, the magnitude of the deviation calculated by the balance measurement can be replaced by the strain. The major variables involved in the occurrence of deviations are the strength of joint structures and neurological conditions. Therefore plastic deformation and adaptation occur as a long-term depression of neural circuits is strengthened in different ways at different locations each time in various clinical situations. This is the reason why the sequence of the restoration process while correcting deviations is following reverse order of the accumulation in many layers in the muscular nervous system. Conclusions: From the above results, it can be inferred that the occurrence and correction of the deviations are corresponding with the plastic deformation and neuro-plasticity.

Effect of Propolis Feeding on Rat Tissues Damaged by X-ray Irradiation (프로폴리스 섭식이 X-선에 의해 손상된 랫드의 여러 조직에 미치는 영향)

  • Lee, Ji-Hoon;Ji, Tae-Jeong;Seo, Eul-Won
    • Journal of Radiation Protection and Research
    • /
    • v.32 no.2
    • /
    • pp.51-57
    • /
    • 2007
  • Present study aimed to investigate the radioprotective effects of propolis feeding on rat tissues damaged by X-ray irradiation. It was shown that the number of white blood cell in X-ray irradiated group supplemented with propolis increased as much to those of the control group and also the GOT activities among the blood components were decreased after propolis feeding. The mineral contents such as Mg, Fe, Ca, Mn, Cu, Mo, Ni, As in liver were increased as compared with those of the control group but maintained lower level than those of only irradiated groups, implying that the propolis feeding elevated the recovery capability of white blood cell effectively and propolis have a potential resistance to cell damage by X-ray. According to histological observations of the testis, intestine and liver tissues which are irradiated after feeding propolis, the numbers of damaged undifferentiated cells were decreased in testis and the shape of the goblet cells and inner and outer muscular layers in intestine were restored to the original state and the hepatocytes and interlobular veins were shown intact in liver, suggesting that propolis has a potential capacity to restore cell shapes or resist deformation of cell.