• Title/Summary/Keyword: mutated strain

Search Result 62, Processing Time 0.042 seconds

Mutation of a Bacillus stearothermophilus Strain for Over-production of Cyclomaltodextrin Glucanotransferase (Cyclomaltodextrin Glucanotransferase의 생산을 위한 Bacillus stearothermophilus 균주의 돌연변이)

  • 황진봉;김승호
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.6
    • /
    • pp.707-710
    • /
    • 1992
  • Bacillus stearothermophilus No.239 isolated from soil was mutated with N-methyl-N'nitro-N-nitrosoguanidine (MNNG) to yield a series of mutants with increasing levels of cyclomalto-dextrin glucanotransferase (EC 2.4.1.19` CGTase) production. After five consecutive mautation steps, a mutant MNNG 8 with about 14 times of CGTase activity than the parent strain was obtained.

  • PDF

Enhancing the Alginate Degrading Activity of Streptomyces sp. Strain M3 Alginate Lyase by Mutation (Streptomyces sp. M3 알긴산분해효소의 돌연변이에 의한 활성증대)

  • Kim, Hee-Sook
    • Journal of Life Science
    • /
    • v.22 no.1
    • /
    • pp.7-15
    • /
    • 2012
  • A polyguluronate-specific lyase from Streptomyces sp. strain M3 has been previously cloned and characterized. In this study, the M3 alginate lyase gene in the pColdI vector was mutated by site-directed mutagenesis and random mutagenesis to enhance the alginate degrading activity. Six mutants were obtained: Ser25Arg, Phe99Leu, Asp142Asn, Val163Ala, Lys191Glu, and Gly194Cys. Phe99Leu and Lys191Glu mutants completely lost their alginate lyase activity, whereas the alginate degrading activity of Gly194Cys mutant increased by nearly 10 fold. The 3-D protein structure of M3 alginate lyase, which was constructed using the Swiss-Model automodeler, was also compared to the crystal structure of another alginate lyase. A mutated glycine residue was positioned between Gly193 and Tyr195 of the C-terminal conserved sequence, YFKAGXYXQ. A phenylalanine residue (at position 99) and a glycine residue (at position 194) mutated in this study were distant from the active site, but the degrading activity was strongly affected by their mutation.

Actinoplanes teichomyceticus의 변이주에 의한 Teicoplanin 발효생산

  • Kim, Seong-Geon;An, Hyeon-Jin;Kim, Jae-Yeong;No, Yong-Taek
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.299-302
    • /
    • 2000
  • Actinoplanes teichomyceticus ATCC 31121 was mutated with UV to obtain a superior mutant strain with increasing level of teicoplanin production. In this investigation lethal curve was obtained and the optimal condition to induce mutagenesis was determined and to isolate the desirable mutant strain. It was also confirmed that teicoplanin activities by agar diffusion method to be compared to the mother strain. One mutant strain, T991014-1 that had the highest teicoplanin productivity was finally selected for further investigation including fermentation pattern. The mutant was characterized by the various tests such as amylase activity, protease activity, antibiotic resistance, autotoxicity, and productivity.

  • PDF

Selection and Characterization of a High Erythritol Producing Mutant of Moniliella suaveolens var. nigra (에리스리톨 고생산성 변이주인 Moniliella suaveolens var. nigra의 선별과 배양특성)

  • 박홍우;이금숙
    • KSBB Journal
    • /
    • v.17 no.3
    • /
    • pp.290-294
    • /
    • 2002
  • The present work describes the improvement of an erythritol-producing strain to lower the formation of glycerol, which is a characteristic by-product of the strain and could cause difficulties in the recovery and purification of the final product. The yeast-like fungi Moniliella suaveolens var. nigra, isolated previously in the same laboratory from beehives, was mutated by exposing it to a 4 g/L NTG solution. From a total of 2000 mutated strains, Em6j30-14 was selected as the one having the most desirable properties. Cultivating the strain for seven days in 300 mL flasks containing 30 mL of a 400 g/L glucose medium resulted in an erythritol yield of 43%. The glycerol yield was 5%, which is a value 50% lower as compared with the wild type. However, attempts to reproduce the above results in a 5L-fermenter failed, resulting in a similar erythritol concentration but a much higher formation of glycerol. Possible reasons for such a different behaviour could be oxygen limitation or the aggregation of cells, but the exact mechanism could not yet be identified. Foam formation, which is another major problem in large-scale fermentation, tended to be much lower for the mutant strain.

Substitution of Gly-224 Residue to Ile in Yeast Alcohol Dehydro-genase and Enzyme Reaction Mechamism

  • Lee, Kang-Man;Ryu, Ji-Won
    • Archives of Pharmacal Research
    • /
    • v.16 no.3
    • /
    • pp.231-236
    • /
    • 1993
  • Gly-224 residue of yeast alcohol dehydrogenase was mutated by site-directed mufagenesis to isoleucine, which is the corresponding amino acid residue of horse liver alcohol dehydrogenase. The mutated gene on M13 vector was subcloned in YEp13 and used to transform Saccharomyces cerevisiae 302-21 #2 strain, and the expressed protein was purified. The tumover numbers of mutant enzyme for ethanol and acetaldehyde were decreased copared to wild-type enzyme. The results of product inhibition studies indicated that the reaction mechanism was changed to Iso Theorell-Chance from Ordered Bi Bi. We supposed that Gly-224 was related to the enzyme reaction mechanism.

  • PDF

Identification of Potential Target Genes Involved in Doxorubicin Overproduction Using Streptomyces DNA Microarray Systems

  • Kang, Seung-Hoon;Kim, Eung-Soo
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.82-85
    • /
    • 2005
  • Doxorubicin is a highly-valuable anthracycline-family polyketide drug with a very potent anticancer activity, typically produced by a Gram-positive soil bacterium called Streptomyces peucetius. Thanks to the recent development of Streptomyces genomics-based technologies, the random mutagenesis approach for Streptomyces strain improvement has been switched toward the genomics-based technologies including the application of DNA microarray systems. In order to identify and characterize the genomics-driven potential target genes critical for doxorubincin overproduction, three different types of doxorubicin overproducing strains, a dnrI(doxorubicin-specific positive regulatory gene)-overexpressor, a doxA (gene involved in the conversion from daunorubicin to doxorubicin)-overexpressor, and a recursively-mutated industrial strain, were generated and examined their genomic transcription profiles using Streptomyces DNA microarray systems. The DNA microarray results revealed several potential target genes in S. peucetius genome, whose expressions were significantly either up- or down-regulated comparing with the wild-type strain. A systematic understanding of doxorubicin overproduction at the genomic level presented in this research should lead us a rational design of molecular genetic strain improvement strategy.

  • PDF

A Plant Breeder's View on H5N1

  • Kim, Soon-Kwon
    • Korean Journal of Breeding Science
    • /
    • v.40 no.2
    • /
    • pp.106-112
    • /
    • 2008
  • International conferences to block the spread of Avian bird flu occurred in Beijing, 2006 and others warned of the seriousness of the H5N1 strain. The meetings succeeded in generating billions of dollars from USA, EU and World Bank. Migratory birds seem to play a major role in the spread of the aggressive strain globally from Asia to Europe and Africa. Experiences of tolerance breeding of maize (Zea mays L.) for four decades against 20 biotic stresses suggest that the prime cause of the occurrence of H5N1 strain was due to the human beings' counter-efforts against nature. Excessive use of chemicals (spray and injection) in the commercial poultry farms had created high selection pressure on virus. The new strain had mutated for survival. Attempting to eliminate the virus by chemicals for 100% control is a dangerous way to control biotic stresses. This can create more aggressive strains. A solution would be to build up tolerability of the commercial animals against the virus. Improvement of poultry cage environments and respect for nature must be integrated. Potential foes must be watched.

Strain Improvement of Candida tropicalis for the Production of Xylitol: Biochemical and Physiological Characterization of Wild-type and Mutant Strain CT-OMV5

  • Rao Ravella Sreenivas;Jyothi Cherukuri Pavanna;Prakasham Reddy Shetty;Rao Chaganti Subba;Sarma Ponnupalli Nageshwara;Rao Linga Venkateswar
    • Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.113-120
    • /
    • 2006
  • Candida tropicalis was treated with ultraviolet (UV) rays, and the mutants obtained were screened for xylitol production. One of the mutants, the UV1 produced 0.81g of xylitol per gram of xylose. This was further mutated with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), and the mutants obtained were screened for xylitol production. One of the mutants (CT-OMV5) produced 0.85g/g of xylitol from xylose. Xylitol production improved to 0.87 g/g of xylose with this strain when the production medium was supplemented with urea. The CT-OMV5 mutant strain differs by 12 tests when compared to the wild-type Candida tropicalis strain. The XR activity was higher in mutant CT-OMV5. The distinct difference between the mutant and wild-type strain is the presence of numerous chlamvdospores in the mutant. In this investigation, we have demonstrated that mutagenesis was successful in generating a superior xylitol-producing strain, CT-OMV5, and uncovered distinctive biochemical and physiological characteristics of the wild-type and mutant strain, CT-OMV5.

Screening and Characteristics of a Mutant of Actinoplanes teichomyceticus ATCC31121 Highly Producing Teicoplanin (Teicoplanin 생산성이 우수한 Actinoplanes teichomyceticus ATCC31121 변이주 선별 및 배양학적 특성)

  • 노용택
    • Korean Journal of Microbiology
    • /
    • v.37 no.4
    • /
    • pp.299-304
    • /
    • 2001
  • Teicoplanin is a kind of glycopeptide antibiotics produced by Actinoplanes teichomyceticus, and used in the clinical antibiotic such as vancomycin against methicillin-resistant Stabphylococcus aureus (MRSA). Actino planes teichomyceticus ATCC 31121 was mutated with UV to obtain a superior mutant strain with increased level of teicoplanin production. In this investigation, lethal curve was obtained and the optimal condition to induce mutagenesis was determined to isolate the desirable mutant strain. It was also confirmed that teicoplanin activities by agar diffusion method was compared with the parent strain. One mutant strain, T991014-1 with the highest productivity, was finally selected, and was characterized through the various tests such as amylase activity, protease activity, halotolerance, antibiotic resistance, autotoxicity, and productivity. Ad fermentation characteristics of the mutant strain were also studied.

  • PDF

Development of an Efficient Screening Strategy for Rapid Selection of High-yielding Mutants of Itaconic Acid Biosynthesized by Fungal Cells of Aspergillus terreus (이타콘산 고생산성 Aspergillus terreus 변이주의 신속 선별을 위한 효율적인 균주 스크리닝 전략 개발)

  • Shin, Woo-Shik;Kim, Pyeung-Hyeun;Lee, Do-Hoon;Kim, Sang-Yong;Jeong, Yong-Seob;Chun, Gie-Taek
    • KSBB Journal
    • /
    • v.26 no.3
    • /
    • pp.229-236
    • /
    • 2011
  • An efficient screening method was developed for rapid selection of a few overproducers of itaconic acid (IA) among the great many mutants derived from mother strains of Aspergillus terreus. For this purpose, an attempt was made to reveal the relationships of the growth rate and sporulation of each mutant on PDA solid medium with its IA productivity in the final liquid production-culture. As a result, it was possible to classify the mutated strains into 5 groups (from [A] to [E] group) according to theirmorphologies (i.e., growth rate and sporulation extent) on the PDA slants. Notably, most of the high-yielding mutants of IA were observed to belong to [A]group which had the properties of the highest growth rate and sporulation among the 5 groups, whereas the mutant groups of [C], [D] and [E] with the contrasting morphological features showed significant reductions in their IA productivities. From these results, it was concluded that the probability of selecting IA overproducing mutants could be remarkably enhanced when the mutated colonies showing faster growth rates are firstly selected on the PDA plate, and then further screening process is performed on the basis of the sporulation extents of the mutants selected. Consequently, through the application of the strategy developed in this study, costs and time involvedin the labor-intensive task of strain improvement could be reduced to a great extent, because the time-consuming liquid culture processes did not need to performed for the unfavorable mutants belonging to the groups other than group [A].