• Title/Summary/Keyword: mutational bias

Search Result 5, Processing Time 0.021 seconds

Codon Usage Patterns of Tyrosinase Genes in Clonorchis sinensis

  • Bae, Young-An
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.2
    • /
    • pp.175-183
    • /
    • 2017
  • Codon usage bias (CUB) is a unique property of genomes and has contributed to the better understanding of the molecular features and the evolution processes of particular gene. In this study, genetic indices associated with CUB, including relative synonymous codon usage and effective numbers of codons, as well as the nucleotide composition, were investigated in the Clonorchis sinensis tyrosinase genes and their platyhelminth orthologs, which play an important role in the eggshell formation. The relative synonymous codon usage patterns substantially differed among tyrosinase genes examined. In a neutrality analysis, the correlation between $GC_{12}$ and $GC_3$ was statistically significant, and the regression line had a relatively gradual slope (0.218). NC-plot, i.e., $GC_3$ vs effective number of codons (ENC), showed that most of the tyrosinase genes were below the expected curve. The codon adaptation index (CAI) values of the platyhelminth tyrosinases had a narrow distribution between 0.685/0.714 and 0.797/0.837, and were negatively correlated with their ENC. Taken together, these results suggested that CUB in the tyrosinase genes seemed to be basically governed by selection pressures rather than mutational bias, although the latter factor provided an additional force in shaping CUB of the C. sinensis and Opisthorchis viverrini genes. It was also apparent that the equilibrium point between selection pressure and mutational bias is much more inclined to selection pressure in highly expressed C. sinensis genes, than in poorly expressed genes.

Codon Usage Bias and Determining Forces in Taenia solium Genome

  • Yang, Xing;Ma, Xusheng;Luo, Xuenong;Ling, Houjun;Zhang, Xichen;Cai, Xuepeng
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.6
    • /
    • pp.689-697
    • /
    • 2015
  • The tapeworm Taenia solium is an important human zoonotic parasite that causes great economic loss and also endangers public health. At present, an effective vaccine that will prevent infection and chemotherapy without any side effect remains to be developed. In this study, codon usage patterns in the T. solium genome were examined through 8,484 protein-coding genes. Neutrality analysis showed that T. solium had a narrow GC distribution, and a significant correlation was observed between GC12 and GC3. Examination of an NC (ENC vs GC3s)-plot showed a few genes on or close to the expected curve, but the majority of points with low-ENC (the effective number of codons) values were detected below the expected curve, suggesting that mutational bias plays a major role in shaping codon usage. The Parity Rule 2 plot (PR2) analysis showed that GC and AT were not used proportionally. We also identified 26 optimal codons in the T. solium genome, all of which ended with either a G or C residue. These optimal codons in the T. solium genome are likely consistent with tRNAs that are highly expressed in the cell, suggesting that mutational and translational selection forces are probably driving factors of codon usage bias in the T. solium genome.

The pattern of coding sequences in the chloroplast genome of Atropa belladonna and a comparative analysis with other related genomes in the nightshade family

  • Satyabrata Sahoo;Ria Rakshit
    • Genomics & Informatics
    • /
    • v.20 no.4
    • /
    • pp.43.1-43.18
    • /
    • 2022
  • Atropa belladonna is a valuable medicinal plant and a commercial source of tropane alkaloids, which are frequently utilized in therapeutic practice. In this study, bioinformatic methodologies were used to examine the pattern of coding sequences and the factors that might influence codon usage bias in the chloroplast genome of Atropa belladonna and other nightshade genomes. The chloroplast engineering being a promising field in modern biotechnology, the characterization of chloroplast genome is very important. The results revealed that the chloroplast genomes of Nicotiana tabacum, Solanum lycopersicum, Capsicum frutescens, Datura stramonium, Lyciumbarbarum, Solanum melongena, and Solanum tuberosum exhibited comparable codon usage patterns. In these chloroplast genomes, we observed a weak codon usage bias. According to the correspondence analysis, the genesis of the codon use bias in these chloroplast genes might be explained by natural selection, directed mutational pressure, and other factors. GC12 and GC3S were shown to have no meaningful relationship. Further research revealed that natural selection primarily shaped the codon usage in A. belladonna and other nightshade genomes for translational efficiency. The sequencing properties of these chloroplast genomes were also investigated by investing the occurrences of palindromes and inverted repeats, which would be useful for future research on medicinal plants.

A Statistical Analysis of SNPs, In-Dels, and Their Flanking Sequences in Human Genomic Regions

  • Shin, Seung-Wook;Kim, Young-Joo;Kim, Byung-Dong
    • Genomics & Informatics
    • /
    • v.5 no.2
    • /
    • pp.68-76
    • /
    • 2007
  • Due to the increasing interest in SNPs and mutational hot spots for disease traits, it is becoming more important to define and understand the relationship between SNPs and their flanking sequences. To study the effects of flanking sequences on SNPs, statistical approaches are necessary to assess bias in SNP data. In this study we mainly applied Markov chains for SNP sequences, particularly those located in intronic regions, and for analysis of in-del data. All of the pertaining sequences showed a significant tendency to generate particular SNP types. Most sequences flanking SNPs had lower complexities than average sequences, and some of them were associated with microsatellites. Moreover, many Alu repeats were found in the flanking sequences. We observed an elevated frequency of single-base-pair repeat-like sequences, mirror repeats, and palindromes in the SNP flanking sequence data. Alu repeats are hypothesized to be associated with C-to-T transition mutations or A-to-I RNA editing. In particular, the in-del data revealed an association between particular changes such as palindromes or mirror repeats. Results indicate that the mechanism of induction of in-del transitions is probably very different from that which is responsible for other SNPs. From a statistical perspective, frequent DNA lesions in some regions probably have effects on the occurrence of SNPs.

Studies on Synonymous Codon and Amino Acid Usage Biases in the Broad-Host Range Bacteriophage KVP40

  • Sau Keya;Gupta Sanjib Kumar;Sau Subrata;Mandal Subhas Chandra;Ghosh Tapash Chandra
    • Journal of Microbiology
    • /
    • v.45 no.1
    • /
    • pp.58-63
    • /
    • 2007
  • In this study, the relative synonymous codon and amino acid usage biases of the broad-host range phage, KVP40, were investigated in an attempt to understand the structure and function of its proteins/protein-coding genes, as well as the role of its tRNAs. Synonymous codons in KVP40 were determined to be AT-rich at the third codon positions, and their variations are dictated principally by both mutational bias and translational selection. Further analysis revealed that the RSCU of KVP40 is distinct from that of its Vibrio hosts, V. cholerae and V. parahaemolyticus. Interestingly, the expression of the putative highly expressed genes of KVP40 appear to be preferentially influenced by the abundant host tRNA species, whereas the tRNAs expressed by KVP40 may be required for the efficient synthesis of all its proteins in a diverse array of hosts. The data generated in this study also revealed that KVP40 proteins are rich in low molecular weight amino acid residues, and that these variations are influenced primarily by hydropathy, mean molecular weight, aromaticity, and cysteine content.