• Title/Summary/Keyword: n-%2A-paranormal operators

Search Result 6, Processing Time 0.017 seconds

GENERALIZED WEYL'S THEOREM FOR ALGEBRAICALLY $k$-QUASI-PARANORMAL OPERATORS

  • Senthilkumar, D.;Naik, P. Maheswari;Sivakumar, N.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.4
    • /
    • pp.655-668
    • /
    • 2012
  • An operator $T\;{\varepsilon}\;B(\mathcal{H})$ is said to be $k$-quasi-paranormal operator if $||T^{k+1}x||^2\;{\leq}\;||T^{k+2}x||\;||T^kx||$ for every $x\;{\epsilon}\;\mathcal{H}$, $k$ is a natural number. This class of operators contains the class of paranormal operators and the class of quasi - class A operators. In this paper, using the operator matrix representation of $k$-quasi-paranormal operators which is related to the paranormal operators, we show that every algebraically $k$-quasi-paranormal operator has Bishop's property ($\beta$), which is an extension of the result proved for paranormal operators in [32]. Also we prove that (i) generalized Weyl's theorem holds for $f(T)$ for every $f\;{\epsilon}\;H({\sigma}(T))$; (ii) generalized a - Browder's theorem holds for $f(S)$ for every $S\;{\prec}\;T$ and $f\;{\epsilon}\;H({\sigma}(S))$; (iii) the spectral mapping theorem holds for the B - Weyl spectrum of T.

A NOTE ON ∗-PARANORMAL OPERATORS AND RELATED CLASSES OF OPERATORS

  • Tanahashi, Kotoro;Uchiyama, Atsushi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.357-371
    • /
    • 2014
  • We shall show that the Riesz idempotent $E_{\lambda}$ of every *-paranormal operator T on a complex Hilbert space H with respect to each isolated point ${\lambda}$ of its spectrum ${\sigma}(T)$ is self-adjoint and satisfies $E_{\lambda}\mathcal{H}=ker(T-{\lambda})= ker(T-{\lambda})^*$. Moreover, Weyl's theorem holds for *-paranormal operators and more general for operators T satisfying the norm condition $||Tx||^n{\leq}||T^nx||\,||x||^{n-1}$ for all $x{\in}\mathcal{H}$. Finally, for this more general class of operators we find a sufficient condition such that $E_{\lambda}\mathcal{H}=ker(T-{\lambda})= ker(T-{\lambda})^*$ holds.

Finite Operators and Weyl Type Theorems for Quasi-*-n-Paranormal Operators

  • ZUO, FEI;YAN, WEI
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.4
    • /
    • pp.885-892
    • /
    • 2015
  • In this paper, we mainly obtain the following assertions: (1) If T is a quasi-*-n-paranormal operator, then T is finite and simply polaroid. (2) If T or $T^*$ is a quasi-*-n-paranormal operator, then Weyl's theorem holds for f(T), where f is an analytic function on ${\sigma}(T)$ and is not constant on each connected component of the open set U containing ${\sigma}(T)$. (3) If E is the Riesz idempotent for a nonzero isolated point ${\lambda}$ of the spectrum of a quasi-*-n-paranormal operator, then E is self-adjoint and $EH=N(T-{\lambda})=N(T-{\lambda})^*$.

CONTRACTIONS OF CLASS Q AND INVARIANT SUBSPACES

  • DUGGAL, B.P.;KUBRUSLY, C.S.;LEVAN, N.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.169-177
    • /
    • 2005
  • A Hilbert Space operator T is of class Q if $T^2{\ast}T^2-2T{\ast}T + I$ is nonnegative. Every paranormal operator is of class Q, but class-Q operators are not necessarily normaloid. It is shown that if a class-Q contraction T has no nontrivial invariant subspace, then it is a proper contraction. Moreover, the nonnegative operator Q = $T^2{\ast}T^2-2T{\ast}T + I$ also is a proper contraction.

PARANORMAL CONTRACTIONS AND INVARIANT SUBSPACES

  • Duggal, B.P.;Kubrusly, C.S.;Levan, N.
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.6
    • /
    • pp.933-942
    • /
    • 2003
  • It is shown that if a paranormal contraction T has no nontrivial invariant subspace, then it is a proper contraction. Moreover, the nonnegative operator Q = T/sup 2*/T/sup 2/ - 2T/sup */T + I also is a proper contraction. If a quasihyponormal contraction has no nontrivial invariant subspace then, in addition, its defect operator D is a proper contraction and its itself-commutator is a trace-class strict contraction. Furthermore, if one of Q or D is compact, then so is the other, and Q and D are strict ontraction.

A NEW CRITERION FOR MOMENT INFINITELY DIVISIBLE WEIGHTED SHIFTS

  • Hong T. T. Trinh
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.437-460
    • /
    • 2024
  • In this paper we present the weighted shift operators having the property of moment infinite divisibility. We first review the monotone theory and conditional positive definiteness. Next, we study the infinite divisibility of sequences. A sequence of real numbers γ is said to be infinitely divisible if for any p > 0, the sequence γp = {γpn}n=0 is positive definite. For sequences α = {αn}n=0 of positive real numbers, we consider the weighted shift operators Wα. It is also known that Wα is moment infinitely divisible if and only if the sequences {γn}n=0 and {γn+1}n=0 of Wα are infinitely divisible. Here γ is the moment sequence associated with α. We use conditional positive definiteness to establish a new criterion for moment infinite divisibility of Wα, which only requires infinite divisibility of the sequence {γn}n=0. Finally, we consider some examples and properties of weighted shift operators having the property of (k, 0)-CPD; that is, the moment matrix Mγ(n, k) is CPD for any n ≥ 0.