• Title/Summary/Keyword: nano sheet

Search Result 243, Processing Time 0.03 seconds

Growth of Sheet-like ZnO Nanostructures on ZnO nano rods using Chemical Bath Deposition

  • Kim, Hyuntae;Choi, Soobong
    • Applied Science and Convergence Technology
    • /
    • v.27 no.2
    • /
    • pp.38-41
    • /
    • 2018
  • We demonstrate the growth of a sheet-like ZnO membrane on ZnO nano rod layers. The growth process is composed of 3 steps of ZnO seed formation, ZnO nano rod growth and sheet-like ZnO membrane formation on those nano rods. To confirm the fundamental growth mechanism, the lattice structures of each step were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM) measurement. Analysis of the relation between the texture coefficient and the surface shape of the ZnO membrane on the ZnO nano rods shows that the surface morphology of ZnO nano structures can be controlled using the temperature of the growing solution and the concentration of the chemical solution.

Synthesis of Nano-Zirconia by Chemical Process and Its Application to Optical Display (화학적 공정에 의한 나노 지르코니아 합성 및 광학디스플레이 응용)

  • Park, Jung Ju;Kim, Bong Gu;Son, Jeong Hun;Jung, Yeon Gil
    • Korean Journal of Materials Research
    • /
    • v.30 no.11
    • /
    • pp.609-614
    • /
    • 2020
  • 3 mol% yttria-doped stabilized zirconia (3YSZ) is synthesized by a solvothermal process, and its characteristics are investigated using various methods. Also, the dispersibility of synthesized 3YSZ nanoparticles is observed with the species of surface modifier. The 3YSZ nano sol prepared with an optimum condition is employed in prism coating and its properties are evaluated. The synthesized 3YSZ nanoparticles show a globular shape with about 10 to 20 nm crystallite size. The mixed phases with the nano sol show a high specific surface of 178 ㎡/g. The prism sheet coated with the 3YSZ nano sol present an excellent refractive index, transmittance, and luminance; refractive index is 1.603, transmittance is 90.2 %, and luminance of coating film is improved by 5.9 % compared to that of the film without 3YSZ nano sol. It is verified that the surface modified 3YSZ is suitable as the prism sheet for optical displays.

Growth of 3D TiO2 Nano-wall-like Structure with High Effective Surface Area (높은 유효 표면적을 갖는 3차원 TiO2 나노벽 유사구조의 성장)

  • Kim, Mee-Ree;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.413-418
    • /
    • 2021
  • Nano-materials with high effective surface areas have been applied to functional materials, such as high sensitive gas sensors and biosensors and high-efficiency catalytic materials. In this study, titanate sheets with a 3D nano-wall-like structure, high effective surface area, were synthesized vertically to the substrate by a chemical bath deposition (CBD) process using a Ti sheet and urea. The synthesis temperature and synthesis duration time were controlled to the optimal conditions of a 3D nano-wall-like structure in the CBD process. The synthesized ammonium titanate sheets with a 3D nano-wall-like structure were annealed in air to transform to TiO2 with a 3D nano-wall-like structure for various applications. As a result, the optimal temperature in the CBD process for the synthesis of a uniform ammonium titanate sheet with a 3D nano-wall-like structure was 90 ℃. TiO2 with a 3D nano-wall-like structure was obtained from the ammonium titanate sheet with a 3D nano-wall-like structure by annealing above 550 ℃ for three hours. In particular, TiO2 with a 3D nano-wall-like structure with a dominant rutile phase was obtained by post-annealing at 700 ℃. On the other hand, damage to the 3D nano-wall edge was observed after 700 ℃ post-annealing.

Determination of Deformation Behavior of Coating Layer on Electronic galvanized Sheet Steel using Nano-indentation and FEM (나노 인덴테이션 실험과 유한요소해석을 이용한 전기아연도금강판의 코팅층 체적 거동 결정)

  • Ko, Young-Ho;Lee, Jung-Min;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.186-194
    • /
    • 2005
  • This study was designed to investigate the mechanical properties of the coating layer on electronic galvanized sheet steel as a part of the ongoing research on the coated steel. Those properties were determined using nano-indentation, the finite element method, and artificial neural networks. First and foremost, the load-displacement curve (the loading-unloading curve) of coatings was derived from a nano-indentation test by CSM (continuous stiffness measurement) and was used to measure the elastic modulus and hardness of the coating layer. The properties derived were applied in FE simulations of a nano-indentation test, and the analytical results were compared with the experimental result. A numerical model for FE simulations was established for the coating layer and the substrate separately. Finally, to determine the mechanical properties of the coating, such as the stress-strain curve, functional equations of loading and unloading curves were introduced and computed using the neural networks method. The results show errors within $5\%$ in comparison with the load-displacement measured by a nano-indentation test.

A Study on the Fabrication of Nano Pattern using a Nickel Stamper Replicated from Anodic Aluminum Oxide (Anodic Aluminum Oxide 기반 니켈 스탬퍼를 이용한 나노패턴 성형에 관한 연구)

  • Kim, S.;Kim, J.S.;Hong, S.K.;Kim, H.J.;Yoon, K.H.;Kang, J.J.
    • Transactions of Materials Processing
    • /
    • v.20 no.1
    • /
    • pp.23-28
    • /
    • 2011
  • For the fabrication of nano patterned products manufacturing a nano patterned mold is needed in advance. The nano patterned stamper was fabricated by electroforming the AAO master with nickel. The surface of nickel-plated stamper had nano-patterned holes with the diameter of 73 nm and the depth of 83 nm. Hot embossing was used for forming P3HT sheet and the process factors of hot embossing were closer as pressure, temperature and time. In the present paper hot embossing experiments were performed to find the main process conditions to affect the replication ratio of nano patterns on surface of P3HT sheet. As a result, main contributing factors for the replication ratio of hot embossed pattern could be sequentially enumerated as pressure, temperature and time.

Studies on the Cellulose Acetate Glasses Frame Sheet (셀룰로오스 아세테이트 안경테 판재에 관한 연구)

  • Lee, Hae Sung;Lee, Sung Jun;Jung, Sang Won;Kim, Hyun-Chul;Kim, Eunjoo;Go, Young Jun;Lee, Se Guen
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.1
    • /
    • pp.13-19
    • /
    • 2011
  • Purpose: The purpose of this study was to assess characterize overseas company's Cellulose acetate glasses frame sheets (overseas company's CA sheet) Also, the optimum content of plasticizer and melt extrusion condition of industrial CA resin were established for appropriate glasses frame. Methods: Overseas company's Cellulose acetate glasses frame sheets (overseas company's CA sheet) were characterized by $^1H$-NMR, GPC, and TGA. Also, the optimum content of plasticizer and melt extrusion condition of industrial CA resin were established. Results: The plasticizer of overseas company's CA sheet measured by $^1H$-NMR was diethyl phthalate, and its content was measured 30 wt% by TGA. Also, industrial CA resin showed enough melting behavior in the range of 190~200$^{\circ}C$. Compared to overseas company's CA sheet's tensile strength value of 2.2~2.8 kgf/$mm^2$, industrial CA resin exhibited sufficient tensile strength value of 2.3 kgf/$mm^2$ for glasses frame. Conclusions: Industrial CA resin with 30 wt% plasticizer content would be a promising material for glasses frame prepared by melt extrusion to replace China CA sheet.

The Influence of Annealing Temperature on Mechanical Properties and Friction Coefficient of Coating Layer in Galvannealed Sheet Steel (용융아연도금강판에서 어닐링 온도변화에 따른 화합물화가 도금층 기계적 특성 및 마찰계수에 미치는 영향)

  • Jeon J.S.;Lee J. M.;;Kim D. J.;Kang Y.S.;Kim B. M.
    • Transactions of Materials Processing
    • /
    • v.14 no.8 s.80
    • /
    • pp.696-703
    • /
    • 2005
  • In the modern days, a galvannealed sheet steel (GA) instead of a cold rolled steel sheet has been widely used as an alternative to extend the life of automotive body. Accordingly, the mechanical properties of GA for automobiles were taken into account and studied by examining their variation with annealing temperature. To clarify the effect of surface features on the mechanical and frictional properties of GA, the several tests such as nanoindentation, Vickers hardness and nano scratch test were executed. The frictional characteristics of coating layers of GA were examined through nano scratch test in this study. The friction coefficient of coating layers on the surface was obtained from the nano scratch. The variation of friction coefficient versus velocity and pressure was taken into consideration in this paper. Hardness and elastic modulus of coating layer were increased as increasing annealing temperature.

The influence of annealing temperature on mechanical properties and friction coefficient of coating layer in galvannealed sheet steel (합금화 용융아연도금강판에서 어닐링 온도가 도금층 기계적 특성 및 마찰계수에 미치는 영향)

  • Jeon J. S.;Lee J. M.;Kim D. H.;Kim D. J.;Kang Y. S.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.113-117
    • /
    • 2005
  • In the modern days, a galvannealed sheet steel (GA) instead of a cold rolled steel sheet has been widely used as an alternative to extend the life of automotive body. Accordingly, the mechanical properties of GA for automobiles were taken into account and studied by comparing with the temperature variation on annealing in this study. To clarify the effect of surface features in the mechanical and frictional properties of GA, the several tests such as nanoindentation, victors hardness and nano scratch test were executed. The developed neural networks apply also to obtain reliable mechanical properties of the thin films. Load-displacement curve was computed by the analysis procedure and compared with experimental results. The frictional characteristics of coating layers in GA were verified though nano scratch test in this study. The friction coefficient of coating layers on the surface was obtained from the nano scratch. The variation of friction coefficient versus velocity and pressure was taken into consideration in this paper.

  • PDF

Characteristics of an MgO Green Sheet as a Protective Layer of AC-PDP

  • Park, Deok-Hai;Park, Min-Soo;Kim, Bo-Hyun;Ryu, Byung-Gil;Kim, Sung-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.387-390
    • /
    • 2006
  • The protective layer of AC-PDP was fabricated by laminating an MgO green sheet. The MgO green sheet was made by coating MgO solution composed of solvent, dispersant, binder, and MgO nano-powder. The MgO solution was coated by the die casting method on the base film. We fabricated three kinds of MgO green sheets of which thicknesses were 20, 28, and $40\;{\mu}m$, respectively. The MgO nano-powder showed lower CL intensity and ${\gamma}i$ than the e-beam MgO. The MgO green sheet applied panels showed low luminance and current density. The efficiency was almost same as the conventional e-beam MgO panel.

  • PDF

Electromagnetic Wave Absorption Behavior of a Fe-based Nanocrystalline Alloy mixed with a Ferrite Powder (Fe계 나노결정립 분말과 페라이트 복합체의 전자파 흡수특성)

  • Koo, S.K.;Lee, M.H.;Moon, B.G.;Song, Y.S.;Sohn, K.Y.;Park, W.W.
    • Journal of Powder Materials
    • /
    • v.15 no.4
    • /
    • pp.292-296
    • /
    • 2008
  • The electromagnetic (EM) wave absorption properties of the $Fe_{73}Si_{16}B_7Nb_3Cu_1$ nanocrystalline powder mixed with 5 to 20 vol% of Ni-Zn ferrites has been investigated in a frequency range from 100MHz to 10GHz. Amorphous ribbons prepared by a planar flow casting process were pulverized and milled after annealing at 425 for 1 hour. The powder was mixed with a ferrite powder at various volume ratios to tape-cast into a 1.0mm thick sheet. Results showed that the EM wave absorption sheet with Ni-Zn ferrite powder reduced complex permittivity due to low dielectric constant of ferrite compared with nanocrystalline powder, while that with 5 vol% of ferrite showed relatively higher imaginary part of permeability. The sheet mixed with 5 vol% ferrite powder showed the best electromagnetic wave absorption properties at high frequency ranges, which resulted from the increased imaginary part of permeability due to reduced eddy current.