• Title/Summary/Keyword: nanocrystals

Search Result 267, Processing Time 0.034 seconds

Thermal Evaporation Syntheis and Luminescence Properties of SnO2 Nanocrystals using Mg as the Reducing Agent (Mg를 환원제로 사용하여 열증발법으로 합성한 SnO2 나노결정 및 발광 특성)

  • So, Ho-Jin;Lee, Geun-Hyoung
    • Korean Journal of Materials Research
    • /
    • v.30 no.7
    • /
    • pp.338-342
    • /
    • 2020
  • Tin oxide (SnO2) nanocrystals are synthesized by a thermal evaporation method using a mixture of SnO2 and Mg powders. The synthesis process is performed in air at atmospheric pressure, which makes the process very simple. Nanocrystals with a belt shape start to form at 900 ℃ lower than the melting point of SnO2. As the synthesis temperature increases to 1,100 ℃, the quantity of nanocrystals increases. The size of the nanocrystals did not change with increasing temperature. When SnO2 powder without Mg powder is used as the source material, no nanocrystals are synthesized even at 1,100 ℃, indicating that Mg plays an important role in the formation of the SnO2 nanocrystals at temperatures as low as 900 ℃. X-ray diffraction analysis shows that the SnO2 nanocrystals have a rutile crystal structure. The belt-shaped SnO2 nanocrystals have a width of 300~800 nm, a thickness of 50 nm, and a length of several tens of micrometers. A strong blue emission peak centered at 410 nm is observed in the cathodoluminescence spectra of the belt-shaped SnO2 nanocrystals.

Nanocrystals and Their Biomedical Applications

  • Jun, Young-wook;Jang, Jung-tak;Cheon, Jin-woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.7
    • /
    • pp.961-971
    • /
    • 2006
  • Shape controlled synthesis of inorganic nanocrystals is one of the important issues in materials chemistry due to their novel shape dependent properties. Although various shapes of nanocrystals have been developed, a systematic account on the shape control of these nanocrystals still remains an important subject in materials chemistry. In this article, we will overview the recent developments in the geometrical shape evolution of semiconductor and metal oxide nanocrystals obtained by nonhydrolytic synthetic methods. Many structurally unprecedented motifs have appeared as zero-dimesional (D) polyhedrons, one-D rods and wires, two-D plates and prisms, and other advanced shapes such as branched rods, stars, and inorganic dendrites. Important parameters which determine the geometrical shapes of nanocrystals are also illustrated. In addition, as a possible application of such nanocrystals for biomedical sciences, we further describe their utilizations for cancer diagnosis through nanocrystal-assisted magnetic resonance imaging (MRI).

Effect of sulfuric acid hydrolysis condition on yield, particle size and surface charge of cellulose nanocrystals (황산 가수분해 조건이 셀룰로오스 나노크리스탈의 수율, 입도 및 전기화학적 특성에 미치는 영향)

  • Ryu, Jae-Ho;Youn, Hye-Jung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.4
    • /
    • pp.67-75
    • /
    • 2011
  • Sulfuric acid hydrolysis is a typical approach for producing cellulose nanocrystals. The method has been widely used, but it has a disadvantage of low yield of cellulose nanocrystals compared to mechanical method. To expand the application of cellulose nanocrystals in practical, we should be able to produce them with higher yield and the controlled properties. In this study, therefore, we intended to investigate the effect of sulfuric acid hydrolysis condition on the characteristics of the prepared cellulose nanocrystals. The concentration of sulfuric acid, temperature and hydrolysis time were varied, and the yield as well as diverse properties including the morphology, size and zeta potential were examined. We could obtain cellulose nanocrystals up to 70% of yield and found that the properties were dependent on the reaction condition. It would be helpful to select an appropriate condition for producing cellulose nanocrystals.

Cooperative Spontaneous Emission from Nanocrystals to a Surface Plasmon Polariton in a Metallic Nanowire

  • Lee, Joong-Hag;Hong, Suc-Kyoung;Nam, Seog-Woo;Kim, Seog-Seong
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.407-414
    • /
    • 2011
  • We analyze the cooperative spontaneous emission of optically excited nanocrystals into surface plasmon polaritons propagating on the surface of a cylindrical metallic nanowire. The spontaneous emission probability of the nanocrystals is obtained by perturbative expansions with and without dipole-dipole interaction among nanocrystals in order to see the cooperative effects. The spontaneous emission probability depends on the radial and axial distributions, as well as on the dipolar orientation of nanocrystals. It is shown that the spontaneous emission probability is strongly influenced by dipole-dipole interaction, axial distribution, and dipolar orientation of nanocrystals for closely spaced nanocrystals.

Easy and Simple Synthesis of CdSe Nanocrystals: The Effect of Reaction Temperature for The Determination of Nanoparticle Size (간편한 CdSe 나노 입자의 합성: 입자크기를 결정하는 반응온도의 효과)

  • Kim, Sungjin
    • Journal of Integrative Natural Science
    • /
    • v.2 no.3
    • /
    • pp.219-223
    • /
    • 2009
  • Easy and simple synthesis of CdSe nanocrystals was achieved through sol-gel process. CdSe nanocrystals were synthesized from the reaction of cadmium oxide and selenium in the prescence of trioctylphosphine oxide, tributylphosphine, octadecene, octadecylamine, and stearic acid. The effect of reaction temperature for the determination of size of CdSe nanocrystals was investigated after the addition of selenium. The reaction temperature for the growth of CdSe nanocrystals was increased by every $20^{\circ}C$ from 170 to 190, 210, 230, 250, 270, and $290^{\circ}C$. When the reaction temperature was higher, the absorption wavelength in the absorption spectrum was increased which indicated that the size of CdSe nanocrystals was increased. The emission wavelength in the photoluminescence spectrum was increased from 438 to 489, 542, 591, 643, 692, and 745 nm, as the size of CdSe nanocrystals was increased. The control of the reaction temperature illustrated that the color tuning of emission wavelength were successfully obtained.

  • PDF

Improved Luminescent Characterization and Synthesis of InP/ZnS Quantum Dot with High-Stability Precursor (고 안정성 전구체를 사용한 InP/ZnS 반도체 나노입자 합성 및 발광 특성 향상)

  • Lee, Eun-Jin;Moon, Jong-Woo;Kim, Yang-Do;Shin, Pyung-Woo;Kim, Young-Kuk
    • Journal of Powder Materials
    • /
    • v.22 no.6
    • /
    • pp.385-390
    • /
    • 2015
  • We report a synthesis of non-toxic InP nanocrystals using non-pyrolytic precursors instead of pyrolytic and unstable tris(trimethylsilyl)phosphine, a popular precursor for synthesis of InP nanocrystals. In this study, InP nanocrystals are successfully synthesized using hexaethyl phosphorous triamide (HPT) and the synthesized InP nanocrystals showed a broad and weak photoluminescence (PL) spectrum. As synthesized InP nanocrystals are subjected to further surface modification process to enhance their stability and photoluminescence. Surface modification of InP nanocrystals is done at $230^{\circ}C$ using 1-dodecanethiol, zinc acetate and fatty acid as sources of ZnS shell. After surface modification, the synthesized InP/ZnS nanocrystals show intense PL spectra centered at the emission wavelength 612 nm through 633 nm. The synthesized InP/ZnS core/shell structure is confirmed with X-ray diffraction (XRD) and Inductively Coupled Plasma - Atomic Emission Spectrometer (ICP-AES). After surface modification, InP/ZnS nanocrystals having narrow particle size distribution are observed by Field Emission Transmission Electron Microscope (FE-TEM). In contrast to uncapped InP nanocrystals, InP/ZnS nanocrystals treated with a newly developed surface modified procedure show highly enhanced PL spectra with quantum yield of 47%.

Solution-Phase Synthesis of Shape-Controlled Metal Nanocrystals

  • Im, Byeong-Gwon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.21.1-21.1
    • /
    • 2011
  • Controlling the morphology of a metal nanocrystal is critical to modern materials chemistry because its physical and chemical properties can be easily and widely tuned by tailoring the size and shape. Combined with ease of synthesis and processing, metal nanocrystals with desired morphologies and thus properties are promising candidates for a wide variety of applications in catalysis, sensing, imaging, electronics, and photonics, and medicine. In this talk, I would like to introduce my recent research results on the shape-controlled synthesis of metal nanocrystals using a simple aqueous method. This water-based system provides a number of merits such as simplicity, convenience, and the potential for large-scale production and enables us to synthesize metal nanocrystals with a rich variety of shapes such as truncated octahedron, cubes, bars, octahedrons, and thin plates. The ability to control the shape of metal nanocrystals provides a great opportunity to systematically investigate their catalytic and optical properties.

  • PDF

Charge retention characteristics of silicon nanocrystals embedded in $SiN_x$ layer for non-volatile memory devices (비휘발성 메모리를 위한 실리콘 나노 결정립을 가지는 실리콘 질화막의 전하 유지 특성)

  • Koo, Hyun-Mo;Huh, Chul;Sung, Gun-Yong;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.101-101
    • /
    • 2007
  • We fabricated floating gate non-volatile memory devices with Si nanocrystals embedded in $SiN_x$ layer to achieve higher trap density. The average size of Si nanocrystals embedded in $SiN_x$ layer was ranging from 3 nm to 5 nm. The MOS capacitor and MOSFET devices with Si nanocrystals embedded in $SiN_x$ layer were analyzed the charging effects as a function of Si nanocrystals size.

  • PDF

Synthesis of CdS, ZnS, and CdS/ZnS Core/Shell Nanocrystals Using Dodecanethiol

  • Niu, Jinzhong;Xu, Weiwei;Shen, Huaibin;Li, Sen;Wang, Hongzhe;Li, Lin Song
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.393-397
    • /
    • 2012
  • We report a new route to synthesize high quality zinc blende CdS and ZnS nanocrystals in noncoordinating solvent 1-octadecene, using dodecanethiol (DDT) molecules as both the sulfur source and surface capping ligands. Different reaction temperatures and Cd(Zn)/DDT molar ratios were tested to optimize the synthesis conditions. Absorption photoluminescence (PL) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) pattern, and transmission electron microscopy (TEM) were used to characterize assynthesized nanocrystals. The narrow half width at the half-maximum on the long wavelength side of the firstexcitonic absorption peak and TEM images demonstrated nearly monodisperse size distributions of asprepared CdS, ZnS, and CdS/ZnS core/shell nanocrystals. Only trap emissions of the nanocrystals were detected when the amount of DDT was excessive, this came from the strong quenching effect of thiol groups on the nanocrystal surfaces. After overcoating with ZnS shells, band-gap emissions of CdS nanocrystals were partially recovered.

Synthesis of Water-Dispersible Maghemite Nanocrystals using 6-Aminohexanoic Acid as a Capping Agent (6-Aminohexanoic Acid를 이용하여 물에 분산되는 Maghemite 나노입자의 합성)

  • Yu, Taekyung
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.403-406
    • /
    • 2013
  • This paper describes a simple route to synthesis of water-dispersible monodisperse maghemite (${\gamma}-Fe_2O_3$) nanocrystals using 6-aminohexanoic acid (AHA) as a stabilizer. The water-dispersible ${\gamma}-Fe_2O_3$ nanocrystals with an average size of 5 nm were obtained simply by addition of $Fe(CO)_5$ into an octyl ether solution containing AHA at $195^{\circ}C$ under argon condition. As-prepared AHA coated ${\gamma}-Fe_2O_3$ nanocrystals exhibited highly crystallinity and magnetic property while keeping a good dispersity in an aqueous phase. We also obtained water-dispersible AHA coated ${\gamma}-Fe_2O_3$ nanocrystals using ligand-exchange method, demonstrating that AHA can be a good candidate for preparing water-dispersible uniform metal oxide nanocrystals.