• Title/Summary/Keyword: nanofiller

Search Result 41, Processing Time 0.035 seconds

Nanofiller as Vulcanizing Aid for Styrene-Butadiene Elastomer

  • Sahoo, N.G.;Das, C.K.;Panda, A.B.;Pramanik, P.
    • Macromolecular Research
    • /
    • v.10 no.6
    • /
    • pp.369-372
    • /
    • 2002
  • The use of ZnO and stearic acid is very well known in sulfenamide accelerated sulfur vulcanization of diene elastomers. Zn-ion coated nano filler has been developed and tested, in styrene-butadiene rubber (SBR) as sulfur vulcanizing activator cum reinforcing filler. In this study Zinc oxide has been replaced by the Zn-ion coated nano silica filler with an aim to study the dual role of this nanofiller in SBR. The presence of Zn-ion on the nano silica filler surface activates the sulfur vulcanization by involving Zn++ in to the sulfurating complex formed with thiazole from sulfenamide. The increase of Zn-ion, on the nanofiller, decrease the scorch safety of the elastomer compound but increase the tensile strength, state of cure and tear strength and attain maximum at its 10% level. The presence of stearic acid increases the rate of vulcanization. Replacement of stearic acid with mono-stearate, however, increases the vulcanization rate but decrease the ultimate state of cure. A mechanistic scheme involving dual function of this nanofiller has been suggested.

Structural properties of the epoxy resin which adds the Nanofiller (Nanofiller를 첨가한 에폭시 수지의 구조적 특성)

  • Lee, Chang-Gong;Lee, Sung-Gap;Ahn, Byeong-Lib;Won, Woo-Sik;Woo, Hyoung-Gwan;Noh, Hyun-Ji
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1234-1235
    • /
    • 2008
  • To add Nanofiller in the epoxy which is used with the solid insulation material of existing and is a research which observes the improvement of the structural quality to produce the Nanocomposite. Montmorillonite uses with Nanofiller, MMT of the content expense (wt%) which is various and mixed an epoxide and produced sample. According to content of the sample result MMT according to respectively content expense to measure SEM photographing which is the possibility of knowing the minute structure of section with sample where is produced and the tensile strength will be able to observe the change of quality. MMT silicate layer uniformly more in the result and within epoxy matrix, being dispersed, will be able to observe.

  • PDF

Investigation of Interfacial Adhesion of Different Shapes of Nano Carbon Fillers Reinforced Glass Fiber/Epoxy Composites by Spray Coating (형상이 다른 나노입자 스프레이 코팅에 따른 탄소계 강화 유리섬유와 에폭시 수지간 계면강도 관찰)

  • Kwon, Dong-Jun;Wang, Zuo-Jia;Choi, Jin-Young;Shin, Pyeong-Su;Lee, En-Seon;Park, Joung-Man
    • Composites Research
    • /
    • v.27 no.3
    • /
    • pp.109-114
    • /
    • 2014
  • Manufacture of nancomposites has simple process for developing nanocomposites due to the increasing applications using nanofillers. This work studied nanofiller coated glass fiber for reinforcing material with good wetting and conductivity and the morphology of nanofiller coated glass fiber was analyzed by FE-SEM. The durability of reinforced glass fiber was investigated with different shapes of nanofillers using sonication rinsing method. Fatigue test was performed to evaluate the adhesion of reinforcing interface and stability of nanofiller coating layer for single fiber reinforced composites. Apparent modulus and conductivity of nanofiller coating layer were evaluated to realize multifunctional of nanocomposites. Fiber type of nanofiller was better than plate type due to better cohesion between fiber and nanofillers. At last, the stability of fiber type nanofiller of coating layer has better durability and conductivity than plate type case.

Nanofiller as Crosslinker for Halogen-Containing Elastomers

  • Sahoo, N.G.;Kumar, E.Shiva;Das, C.K.;Panda, A.B.;Pramanik, P.
    • Macromolecular Research
    • /
    • v.11 no.6
    • /
    • pp.506-510
    • /
    • 2003
  • A Zn ion-coated nanosilica filler has been developed and tested, in chlorosulfonated polyethylene (CSPE) and polychloroprene (CR), as a vulcanizing activator, cum was reinforcing filler. In this study, ZnO was replaced by the Zn ion-coated nanosilica filler with an aim of studying the dual role of this nanofiller in CSPE and CR. In the case of CSPE vulcanizates, the presence of MgO deteriorated the state and rate of cure when the Zn ion-coated nanosilica filler was used, but in the case of CR it improved the state of cure and enhanced the modulus and tensile strength. The Zn ion-coated filler proved to be a better reinforcing-cum-curing agent than was externally added ZnO and NA-22 also proved to be a better curative in the presence of the Zn ion-coated nanosilica filler for both CSPE and CR.

Characteristics of polymerization in nanofiller-containing composite resins (나노필러를 포함하고 있는 복합레진의 중합특성)

  • Lee, Hee-Kyung
    • Journal of Technologic Dentistry
    • /
    • v.29 no.2
    • /
    • pp.9-15
    • /
    • 2007
  • As the development of nanotechnology, the use of composite resins which containing nanofillers becomes popular. The purpose of this study was to test the degree of polymerization of nanofillercontaining composite resins. For the study, three different nanofiller-containing composite resins and two different light-curing units were used. To evaluate the degree of polymerization, the maximum polymerization shrinkage taking place during the light curing, and the microhardness, after the light curing, were measured. As results, two light-curing units exhibited a similar emission spectrum to that of the included photoinitiator, camphorquinone. The only difference between the light-curing units were the width of the emission spectrum. Three different composite resins showed different microhardness values. Among them, Grandio showed the greatest microhardness value. However, there was less microhardness difference on the top and bottom surfaces due to the difference of the light-curing units. The maximum polymerization shrinkage values were also similar in the tested specimens regardless of the difference of the light-curing units. However, Grandio showed the least polymerization shrinkage. According to the manufacturers' data, Grandio showed the highest filler content(vol%).

  • PDF

Carboxylated Nitrile Elastomer/Filler Nanocomposite: Effect of Silica Nanofiller in Thermal, Dynamic Mechanical Behavior, and Interfacial Adhesion

  • Mahaling R. N.;Jana G. K.;Das C. K.;Jeong, H.;Ha C. S.
    • Macromolecular Research
    • /
    • v.13 no.4
    • /
    • pp.306-313
    • /
    • 2005
  • Surface modified nanofillers are often used as curative-cum reinforcing agents for functional polymers. The polymer nanofiller interaction depends on the curative systems used. In the present study the carboxylic group of the carboxylated nitrile elastomer participated in the reaction with Zn-ion coated nanosilica filler producing a type of ionomeric elastomer. The interaction at the molecular level thus produced a high modulus vulcanizate. In this case, the S and MBT system, as curative, had an edge over the MDA and DPG curative system. Interfacial adhesion was enhanced in the presence of Zn-ion-coated nanosilica filler associated with dynamic mechanical behavior. The inferior properties obtained in the case of the MDA and DPG curative system were due to the decreased reactivity of the silica surface, thus reducing interfacial adhesion.

EFFECTS OF NANOFILLER CONTENT ON THE MICROHARDNESS OF EXPERIMENTAL MICROHYBRID RESIN COMPOSITES (나노 충전제 함량에 따른 복합레진의 표면 미세경도 차이)

  • Jung, Young-Jung;Kim, Young-Jae;Kim, Jung-Wook;Lee, Sang-Hoon;Kim, Chong-Chul;Hahn, Se-Hyun;Jang, Ki-Taeg
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.1
    • /
    • pp.7-12
    • /
    • 2005
  • The objective of this study was to evaluate the effects of nanofiller content on the microhardness and polymerization of experimental microhybrid composites. The nanofiller contorts in the experimental composites were varied (0%, 1%, 2%, 3%), while the total filler content remained constant as 76%wt. We obtained the following results: 1. The microhardness of the top surface for the 2% 3% nanofilled microhybrid composites were significantly higher than those for the 0%, 1% nanofilled composites (p<0.05), but the difference was not great. 2. The microhardness of the bottom surfaces significantly increased with an increase in the nanofiller level (p<0.05), except between the 2% and 3% nanofilled groups (P>0.05). 3. As the nanofiller level increased, the difference between microhardness of top and bottom surfaces significantly decreased (p<0.05), except between 2% and 3% nanofilled groups (p>0.05).

  • PDF

Analysis on the influence of sports equipment of fiber reinforced composite material on social sports development

  • Jian Li;Ningjiang Bin;Fuqiang Guo;Xiang Gao;Renguo Chen;Hongbin Yao;Chengkun Zhou
    • Advances in nano research
    • /
    • v.15 no.1
    • /
    • pp.49-57
    • /
    • 2023
  • As composite materials are used in many applications, the modern world looks forward to significant progress. An overview of the application of composite fiber materials in sports equipment is provided in this article, focusing primarily on the advantages of these materials when applied to sports equipment, as well as an Analysis of the influence of sports equipment of fiber-reinforced composite material on social sports development. The present study investigated surface morphology and physical and mechanical properties of S-glass fiber epoxy composites containing Al2O3 nanofillers (for example, 1 wt%, 2 wt%, 3 wt%, 4 wt%). A mechanical stirrer and ultrasonication combined the Al2O3 nanofiller with the matrix in varying amounts. A compression molding method was used to produce sheet composites. A first physical observation is well done, which confirms that nanoparticles are deposited on the fiber, and adhesive bonds are formed. Al2O3 nanofiller crystalline structure was investigated by X-ray diffraction, and its surface morphology was examined by scanning electron microscope (SEM). In the experimental test, nanofiller content was added at a rate of 1, 2, and 3% by weight, which caused a gradual decrease in void fraction by 2.851, 2.533, and 1.724%, respectively, an increase from 2.7%. The atomic bonding mechanism shows molecular bonding between nanoparticles and fibers. At temperatures between 60 ℃ and 380 ℃, Thermogravimetric Analysis (TGA) analysis shows that NPs deposition improves the thermal properties of the fibers and causes negligible weight reduction (percentage). Thermal stability of the composites was therefore presented up to 380 ℃. The Fourier Transform Infrared Spectrometer (FTIR) spectrum confirms that nanoparticles have been deposited successfully on the fiber.

The structure properties of polymer composite (고분자 복합재료의 구조적 특성)

  • Noh, Hyun-Ji;Lee, Sung-Gap;Nam, Sung-Pill;Kim, Da-Mi;Ahn, Byeong-Lib;Won, Woo-Sik;Woo, Hyoung-Gwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.262-263
    • /
    • 2009
  • To add Nanofiller in the epoxy which is used with the solid insulation material of existing and is a research which observes the improvement of the structural quality to produce the Nanocomposite. Montmorillonite uses with Nanofiller, MMT of the content expense (wt%) which is various and mixed an epoxide and produced sample. According to content of the sample result MMT according to respectively content expense to measure SEM photographing which is the possibility of knowing the minute structure of section with sample where is produced and the tensile strength will be able to observe the change of quality. MMT silicate layer uniformly more in the result and within epoxy matrix, being dispersed, will be able to observe.

  • PDF

Preparation and Properties of Polystyrene/Graphene Nanofiller Nanocomposites via Latex Technology (라텍스 기법에 의한 폴리스티렌/그래핀 나노필러 나노복합재료의 제조 및 물성)

  • Yeom, Hyo Yeol;Na, Hyo Yeol;Chung, Dae-Won;Lee, Seong Jae
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.468-474
    • /
    • 2015
  • Electrically conductive polymer nanocomposites were prepared by the inclusion of graphene-based nanofillers. Graphene oxide (GO) and reduced graphene oxide wrapped by poly(styrene sulfonate) (PSS-RGO) were used as nanofillers to make good dispersion with the aqueous dispersion of polystyrene (PS) particles. GO sheets were synthesized by the modified Hummers' method from graphite, and PSS-RGO sheets were prepared by the reduction of GO-dispersed PSS solution with hydrazine monohydrate. Morphology and properties of PS/GO and PS/PSS-RGO nanocomposites via latex technology were investigated. Both nanofillers showed well dispersed morphology in PS matrix. Rheological and electrical percolation thresholds were 0.28 and 0.51 wt% for GO, and 0.50 and 1.01 wt% for PSS-RGO respectively. It is speculated that PS/GO nanocomposites showed better conductivity than PS/PSS-RGO counterparts due to the partial recovery of GO by thermal reduction during molding.