• Title/Summary/Keyword: nanofiltration

Search Result 207, Processing Time 0.028 seconds

Rejection Characteristics of Various Heavy Metals by Low-pressure Nanofiltration (저압나노여과에 의한 각종 중금속의 제거 특성)

  • Oh, Jeong-Ik;Kim, Han-Seung;Kim, Chung-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.4
    • /
    • pp.493-499
    • /
    • 2004
  • Rejection characteristics of heavy metals by nanofiltration membranes were investigated. Nanofiltration membranes rejected heavy metals much better than chloride, sulfate and TOC, of which concentration in synthetic wastewater was higher than that of heavy metals. To consider rejection characteristics of various metals by nanofiltration membranes, separation coefficient, which is the ratio of the metal permeation rate to the chloride ion or TOC permeation rate, was introduced. In spite of different materials and different nominal salt rejection of nanofiltration membrane used, the separation coefficients of metals were nearly the same. In particular, the separation coefficient of arsenic against chloride ion and TOC was larger than any other separation coefficient of heavy metals. These phenomena were observed in the relationship between the molar conductivity and the separation coefficient for heavy metals.

A Study on The Effectiveness of Watertreatment Using Activated Carbons and Membranes (활성탄과 Membrane을 이용한 수처리효과에 관한연구)

  • 김영진;김영규;정문호
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.4
    • /
    • pp.67-72
    • /
    • 1997
  • To evaluate the effectiveness of water treatment using nanofiltration, ultrafiltration, and microfiltration systems, tapwater contaminated by bacteria and nitrate nitrogen was filtered, and then the rates of removal for many kinds of contaminants were comp.ared and investigated. The rates of turbidity removal by these systems are around 80% all of them. However, nanofiltration system is the most effective as hardness removal is 80%, suspended solids 90%, total residual chlorine 90% and nitrate nitrogen 69%. Among nanofiltration, ultrafiltration and microfiltration systems, nanofiltration system is the most stable in flow rate of permeate. Comparing hollow and spiral type of ultrafiltration, microfiltration each, spiral type is more stable than hollow type owing to rinsing effect of brine. The values of pH in ultrafiltration and microfiltration systems are between 7, 0 and 7.5, and that of nanofiltration system is low to 6.2-7.0. The effectiveness of heterotrophic bacteria removal is the most excellent in the nanofiltration system.

  • PDF

Treatability Prediction Method for Nanofiltration Systems in Drinking Water Treatments (정수처리에 이용되는 나노여과막시스템의 성능예측방법 확립)

  • Kang, Meea;Itoh, Masaki
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.5
    • /
    • pp.572-581
    • /
    • 2005
  • This research is conducted to develop predictable method of real scale nanofiltration treatability with small scale nanofiltration experiments. As a result of comparing calculated values with measured values, they are in a good agreement for the concentrations in filtered water and concentrated water. The results of that are not affected by change of system recovery from 20% to 95%. The proposed method is produced using constant recovery of elements, that is, no considering the pressure change. we can predict filtrated flux and contaminant concentrations with the method. The method has the following steps. (1) Calculate recovery of each element with water quality level after fixing recovery elements, (2) Predict system recovery with recovery of elements in 1, 2, 3, and 4 banks, (3) Run small scale nanofiltration experiments in predicted water quality and (4) Simulate large scale nanofiltration system for forecasting actual water quality. As the cost for nanofiltration pretest will reduced if we use the proposed method, it will be a promising method for introducing nanofiltration to supply safe drinking water.

Development of Lactose-hydrolyzed Milk with Low Sweetness Using Nanofiltration

  • Choi, S.H.;Lee, S.-B.;Won, H.-R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.6
    • /
    • pp.989-993
    • /
    • 2007
  • A lactose-hydrolyzed milk with low sweetness was developed using nanofiltration. Raw milk was treated with 0.03% ${\beta}$-galactosidase at $4^{\circ}C$ for 24 h to hydrolyze lactose partially. The resultant lactose-hydrolyzed milk containing 0.43% lactose was then concentrated using a nanofiltration membrane to reach concentration factor of 2.13. The concentration factors and coefficients of retention of milk components in nanofiltration were determined. The concentration factor of milk fat was 2.20 which was the highest of the milk components. The coefficient of retention of calcium and riboflavin was 0.96 and 0.76, respectively. However, the coefficient of retention of glucose, galactose, and sodium was 0.21, 0.15, and 0.22, respectively. Raw milk was treated with 0.1% ${\beta}$-galactosidase at $4^{\circ}C$ for 40 h to hydrolyze lactose fully and then concentrated to reach a concentration factor of 1.6 by using nanofiltration. The concentrated milk was reconstituted with water. The lactose-hydrolyzed milk had sweetness similar to milk. The compositional ratios of crude protein, calcium, sodium, and riboflavin of lactose-hydrolyzed nanofiltrated milk to those of raw milk were 99%, 97%, 77%, and 80%, respectively. This study showed that nanofiltration of lactose-hydrolyzed milk to remove galactose and glucose did not cause significant loss of calcium. The lactose-hydrolyzed nanofiltrated milk contained 0.06% lactose and had sweetness similar to milk.

Nanofiltration Composite Membranes Based on Poly(vinyl alcohol) (폴리비닐알콜로 제조된 나노복합막)

  • 오남운;제갈종건;이규호
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.106-108
    • /
    • 1998
  • It has been proved by the study on nanofiltration with PVA dense membranes in our laboratory that the PVA is good material for the formation of chemically stable nanofiltration (NF) membranes. However, the PVA NF composite membranes prepared so far have rarely shown flux and rejection high enough for the commerciallyzation. The reasons for them would be the relatively thick thickness and improper crosslinking degree of the PVA active layers of the composite membranes. In this study, PVA composite membranes with improved nanofiltration properties have been prepared and characterized in terms of the morphology and permeation properties.

  • PDF

Evaluation of the Effective Charge Density on Low Pressure Nanofiltration with the Separation Characteristics of Monovalent and Divalent Solutes in the Production of Drinking Water

  • Oh, Jeong-Ik;Taro, Urase
    • Environmental Engineering Research
    • /
    • v.16 no.1
    • /
    • pp.29-34
    • /
    • 2011
  • The electric charge on a membrane was investigated by analyzing the experimental rejection of various monovalent and divalent ionic solutes. The characteristics of the separation of ionic solutes using various nanofiltration membranes were obtained from an experimental nanofiltration set-up, with a surface area of $40cm^2$ under the operational pressures between 0.25-0.3 MPa. The state of the membrane electric charge was observed using separation coefficients, i.e., the permeation ratio of monovalent to divalent ions. To confirm the state of the membrane charge observed via the separation coefficient, a calculation using the extended Nernst-Planck equation, coupled with the Donnan equilibrium, assuming different electric charge states of the membrane, was compared with the experimental rejection of ionic solutes. The examination of the characteristics of separation using three types of nanofiltration membranes showed that one of the membranes carried a negative/positive double charge density inside, while other two membranes carried either a positive or negative charge density.

Development of Transport Parameters affecting on the Removal of Micro Organic Compounds such as Disinfection By-Products and Pharmaceutically Active Compounds by Low-Pressure Nanofiltration

  • Oh, Jeong-Ik;Yamamoto, Kazuo
    • Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.126-133
    • /
    • 2009
  • This study investigated the removal characteristics of various micro organic compounds by low-pressure nanofiltration membranes comprised of disinfection by products and pharmaceutically active compounds. The experimental removal of micro organic compounds by low-pressure nanofiltration membranes was compared with the transport model calculations, which consist of diffusion and convection terms including steric hindrance factor. The selected molecule from the disinfection byproducts and pharmaceutical active compounds showed a much lower removal than polysac-charides with a similar molecular size. However,the difference between model calculation and experimental removal of disinfection by-products and pharmaceutically active compounds could be corrected. The correlation of Ks with solute radius was further considered to clarity transport phenomena of micro organic solutes through nanofiltration membranes.

Effects of Polymer Material and Solvent Properties on the Performance of Organic Solvent Nanofiltration Membranes (고분자 소재와 용매특성에 따른 유기용매 나노여과막 성능 분석)

  • Choi, JiHyun;Kim, Jeong F.
    • Membrane Journal
    • /
    • v.32 no.1
    • /
    • pp.50-56
    • /
    • 2022
  • In this work, the solvent permeation and separation performance of organic solvent nanofiltration (OSN) membranes were evaluated. Particularly, the PuraMem (PM) series developed for nonpolar solvents were analyzed and tested in dead-end filtration system. PM membranes exhibited higher permeance for nonpolar solvents compared to polar solvents, and their rejection data did not follow conventional trends with respect to solute size. The data showed that simple solution-diffusion model is not suitable to describe the OSN membrane behavior, and a better solvent-solute-membrane interaction parameter must be developed.

Permeation Properties of Surface Modified Nanofiltration Membrane (표면 개질된 나노복합막의 투과 특성)

  • Tak Tae-Moon;Park Hyung-Kiu;Jang Gyung-Gug
    • Membrane Journal
    • /
    • v.14 no.3
    • /
    • pp.207-217
    • /
    • 2004
  • In this study, we prepared nanofiltration membrane by applying the interfacial polymerization method as a way of manufacturing composite membranes. We have examined the effects of various preparation factors such as monomer concentration and composition, thermal curing condition, post treatment condition. In addition to preparation conditions, we also monitored the effects of operation conditions such as feed solution concentration and operation pressure on the permeation properties of the resulting nanofiltration membrane. We intended to increase the permeation rate of nanofiltration membrane by the enlargement of effective surface area using additives during interfacial polymerization step. With increasing the monomer concentration, membrane permeation rate are decreased with maintaining almost constant rejection. With respect to curing condition, with increasing the curing temperature both permeation rate and rejection are decreased. With increasing the ratio of MPD in amino monomer composition, permeation rate decreased drastically with high rejection. With increasing the feed solution concentration, both permeation rate and rejection decreased. Both permeation rates and rejection increased with increasing the operating pressure. Nanofiltration membrane have higher surface roughness with increasing additive concentration in the case of using MPD contained amine composition than using piperazine alone. Permeation rates are much lower than the nanofiltration membrane prepared by piperazine.

Preparation and Characterization of Nanofiltration Membranes for Recovery of Organic Acids from Fermentation Broth (발효액 내 유기산의 효과적 회수를 위한 나노여과 분리막)

  • Hwang, Yoon Sung;Cho, Young Hoon;Park, Ho Bum
    • Membrane Journal
    • /
    • v.23 no.4
    • /
    • pp.304-311
    • /
    • 2013
  • In fermentation-separation processes, nanofiltration membrane processes can be used to separate organic acid and other byproducts such as sugars and proteins. In this study, new nanofiltration membranes were prepared to improve organic acid permeability during the separation processes of fermentation broth. Positively charged nanofiltration membrane was introduced to reduce lactic acid rejection by electrostatic attraction between lactic acid and nanofiltration membrane. Newly fabricated nanofiltration membranes were prepared by grafting cationic polyelectrolyte, PEI, on membrane surface. Thenanofiltration membranes showed positively charged surface potential. As a result, lactic acid rejection was remarkably reduced while the rejection of glucose was not changed significantly.