• Title/Summary/Keyword: navigation solution

Search Result 482, Processing Time 0.025 seconds

Performance Analysis of Navigation Algorithm for GNSS Ground Station

  • Jeong, Seong-Kyun;Park, Han-Earl;Lee, Jae-Eun;Lee, Sang-Uk;Kim, Jae-Hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.3 no.2
    • /
    • pp.32-37
    • /
    • 2008
  • Global Navigation Satellite System (GNSS) is been developing in many countries. The satellite navigation system has the importance in economic and military fields. For utilizing satellite navigation system properly, the technology of GNSS Ground Station is needed. GNSS Ground Station monitors the signal of navigation satellite and analyzes navigation solution. This study deals with the navigation software for GNSS Ground Station. This paper will introduce the navigation solution algorithm for GNSS Ground Station. The navigation solution can be calculated by the code-carrier smoothing method, the Kalman-filter method, the least-square method, and the weight least square method. The performance of each navigation algorithm in this paper is presented.

  • PDF

An Embedded Solution for Fast Navigation and Precise Positioning of Indoor Mobile Robots by Floor Features (바닥 특징점을 사용하는 실내용 정밀 고속 자율 주행 로봇을 위한 싱글보드 컴퓨터 솔루션)

  • Kim, Yong Nyeon;Suh, Il Hong
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.293-300
    • /
    • 2019
  • In this paper, an Embedded solution for fast navigation and precise positioning of mobile robots by floor features is introduced. Most of navigation systems tend to require high-performance computing unit and high quality sensor data. They can produce high accuracy navigation systems but have limited application due to their high cost. The introduced navigation system is designed to be a low cost solution for a wide range of applications such as toys, mobile service robots and education. The key design idea of the system is a simple localization approach using line features of the floor and delayed localization strategy using topological map. It differs from typical navigation approaches which usually use Simultaneous Localization and Mapping (SLAM) technique with high latency localization. This navigation system is implemented on single board Raspberry Pi B+ computer which has 1.4 GHz processor and Redone mobile robot which has maximum speed of 1.1 m/s.

TEST AND PERFORMANCE ANALYSIS METHODS OF LOW EARTH ORBIT GPS RECEIVER (지구저궤도 GPS 수신기의 시험 및 성능 분석 방법)

  • Chung Dae-Won;Lee Sang-Jeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.3
    • /
    • pp.259-268
    • /
    • 2006
  • The use of GPS receiver at outer space becomes common in low earth orbit. Recently most of satellites use GPS receiver as navigation solution for finding satellite position. However, the accuracy of navigation solution acquiring directly from GPS receiver is not enough in satellite application such as map generation. Post-processing concepts such as Precise Orbit Determination (POD) are recently applied to satellite data processing to improve satellite position accuracy. The POD uses raw measurement data instead of navigation solution of GPS receiver. The performance of raw measurement data depends on raw measurement data accuracy and tracking loop algorithm of GPS receiver. In this paper, a method for evaluating performance of raw measurement data is suggested. Test environment and procedure of the low earth orbit satellite acquiring for navigation solution of GPS receiver and navigation solution of POD are described. In addition, accuracy on navigation solution of GPS receiver, raw measurement data, and navigation solution of POD are analyzed. The proposed method can be applicable to general low earth orbit satellite.

Two-Dimensional Navigation Error for Geometry of Landmark in Line-Of-Sight Measurement Based Vision Navigation System (시선각 측정기반 비전항법시스템에서 랜드마크의 기하학적 배치에 대한 2차원 항법오차)

  • Kim, Young-Sun;Ji, Hyun-Min;Hwang, Dong-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.479-484
    • /
    • 2012
  • Geometric effect of landmarks to the navigation error is investigated in the two-dimensional line-of-sight measurement based vision navigation system. DOP is derived between line-of-sight measurement error and navigation solution error. For cases of three landmarks in an area, variations of the DOP were observed through computer simulations. Vision navigation system experiments were performed for the cases. Simulation and experimental results show that navigation solution errors have similar trend to DOP values of the simulation.

Implementation of Vehicle Navigation System using GNSS, INS, Odometer and Barometer

  • Park, Jungi;Lee, DongSun;Park, Chansik
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.3
    • /
    • pp.141-150
    • /
    • 2015
  • In this study, a Global Navigation Satellite System (GNSS) / Inertial Navigation System (INS) / odometer / barometer integrated navigation system that uses a commercial navigation device including Micro Electro Mechanical Systems (MEMS) accelerometer and gyroscope in addition to GNSS, odometer information obtained from a vehicle, and a separate MEMS barometer sensor was implemented, and the performance was verified. In the case of GNSS and GNSS/INS integrated navigation system that are generally used in a navigation device, the performance would deteriorate in areas where GNSS signals are not available. Therefore, an integrated navigation system that calculates a better navigation solution in areas where GNSS signals are not available compared to general GNSS/INS by correcting the velocity error of GNSS/INS using an odometer and by correcting the cumulative altitude error of GNSS/INS using a barometer was suggested. To verify the performance of the navigation system, a commercial navigation device (Softman, Hyundai Mnsoft, http://www.hyundai-mnsoft.com) and a barometer sensor (ST Company) were installed at a vehicle, and an actual driving test was performed. To examine the performance of the algorithm, the navigation solutions of general GNSS/INS and the GNSS/INS/odometer/barometer integrated navigation system were compared in an area where GNSS signals are not available. As a result, a navigation solution that has a smaller position error than that of GNSS/INS could be obtained in the area where GNSS signals are not available.

Implementation of ZUPT on RPA Navigation System for GNSS Denied Ground Test

  • Shin, Hyeoncheol
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.2
    • /
    • pp.125-129
    • /
    • 2020
  • In this paper, Zero velocity UPdaTe (ZUPT) is implemented on the navigation system of Remotely Piloted Aircraft for GNSS denied environment. RPA's navigation system suffers from lack or loss of satellite signal while maintenance or ground test inside a hangar. Although some of the hangars install GPS repeaters for indoor tests, the anti-jamming equipment with array antenna blocks the repeater signal regarding them as hostile jamming signal. With ZUPT, an aircraft navigation system can be tested free from the divergence of navigation solution without line-of-sight satellites. The designed ZUPT aided centralized Kalman Filter is implemented on the Embedded GPS&INS and simulated with Captive Flight Test data. The simulation result shows stable navigation solution without GNSS updates.

GPS Data Application of the KOMPSAT-2

  • Chung, Dae-Won;Kwon, Ki-Ho;Lee, Sang-Jeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.337-342
    • /
    • 2006
  • The use of GPS receiver at outer space becomes common in low earth orbit. The KOrea Multi-Purpose SATellite-1 (KOMPSAT-1) which was launched in December 1999 has used GPS receiver's navigation solution to perform the Orbit Determination (OD) in the ground. At the circumstance of using only one ground station, the Orbit Determination using GPS receiver is good method. Because the accuracy of navigation solution acquiring directly from GPS receiver is not enough in satellite application such as map generation, post-processing concepts such as the Precise Orbit Determination (POD) are applied to satellite data processing to improve satellite position accuracy. The POD uses GPS receiver's raw measurement data instead of GPS receiver's navigation solution. The KOrea Multi- Purpose SATellite-2 (KOMPSAT-2) system newly uses the POD technique for large scale map generation. The satellite was launched in the end of July 2006. The satellite sends high resolution images in panchromatic band and multi-spectral bands to the ground. The satellite system uses GPS receivers as source of time synchronization and command reference in the satellite, provider of navigation solution for the OD, and provider of raw measurement data for the POD. In this paper, mechanical configuration and operations of the GPS receiver will be presented. The GPS data characteristics of the satellite such as time synchronization, command reference, the OD using GPS receiver's navigation solution, and the POD using GPS receiver's raw measurement data will be presented and analyzed. The enhancement of performance compared with it of the previous satellite will also be analyzed.

  • PDF

Anomaly Detection Method for Drone Navigation System Based on Deep Neural Network

  • Seo, Seong-Hun;Jung, Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.2
    • /
    • pp.109-117
    • /
    • 2022
  • This paper proposes a method for detecting flight anomalies of drones through the difference between the command of flight controller (FC) and the navigation solution. If the drones make a flight normally, control errors generated by the difference between the desired control command of FC and the navigation solution should converge to zero. However, there is a risk of sudden change or divergence of control errors when the FC control feedback loop preset for the normal flight encounters interferences such as strong winds or navigation sensor abnormalities. In this paper, we propose the method with a deep neural network model that predicts the control error in the normal flight so that the abnormal flight state can be detected. The performance of proposed method was evaluated using the real-world flight data. The results showed that the method effectively detects anomalies in various situation.

Performance Enhancement and Countermeasure for GPS Failure of GPS/INS Navigation System of UAV Through Integration of 3D Magnetic Vector

  • No, Heekwon;Song, Junesol;Kim, Jungbeom;Bae, Yonghwan;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.3
    • /
    • pp.155-163
    • /
    • 2018
  • This study examined methods to enhance navigation performance and reduce the divergence of navigation solutions that may occur in the event of global positioning system (GPS) failure by integrating the GPS/inertial navigation system (INS) with the three-dimensional (3D) magnetic vector measurements of a magnetometer. A magnetic heading aiding method that employs a magnetometer has been widely used to enhance the heading performance in low-cost GPS/INS navigation systems with insufficient observability. However, in the case of GPS failure, wrong heading information may further accelerate the divergence of the navigation solution. In this study, a method of integrating the 3D magnetic vector measurements of a magnetometer is proposed as a countermeasure for the case where the GPS fails. As the proposed method does not require attitude information for integration unlike the existing magnetic heading aiding method, it is applicable even in case of GPS failure. In addition, the existing magnetic heading aiding method utilizes only one-dimensional information in the heading direction, whereas the proposed method uses the two-dimensional attitude information of the magnetic vector, thus improving the observability of the system. To confirm the effect of the proposed method, simulation was performed for the normal operation and failure situation of GPS. The result confirmed that the proposed method improved the accuracy of the navigation solution and reduced the divergence speed of the navigation solution in the case of GPS failure, as compared with that of the existing method.

Time Synchronization Error and Calibration in Integrated GPS/INS Systems

  • Ding, Weidong;Wang, Jinling;Li, Yong;Mumford, Peter;Rizos, Chris
    • ETRI Journal
    • /
    • v.30 no.1
    • /
    • pp.59-67
    • /
    • 2008
  • The necessity for the precise time synchronization of measurement data from multiple sensors is widely recognized in the field of global positioning system/inertial navigation system (GPS/INS) integration. Having precise time synchronization is critical for achieving high data fusion performance. The limitations and advantages of various time synchronization scenarios and existing solutions are investigated in this paper. A criterion for evaluating synchronization accuracy requirements is derived on the basis of a comparison of the Kalman filter innovation series and the platform dynamics. An innovative time synchronization solution using a counter and two latching registers is proposed. The proposed solution has been implemented with off-the-shelf components and tested. The resolution and accuracy analysis shows that the proposed solution can achieve a time synchronization accuracy of 0.1 ms if INS can provide a hard-wired timing signal. A synchronization accuracy of 2 ms was achieved when the test system was used to synchronize a low-grade micro-electromechanical inertial measurement unit (IMU), which has only an RS-232 data output interface.

  • PDF