• Title/Summary/Keyword: network attack and defense

Search Result 148, Processing Time 0.02 seconds

An Attack Graph Model for Dynamic Network Environment (동적 네트워크 환경에 적용 가능한 Attack Graph 모델 연구)

  • Moon, Joo Yeon;Kim, Taekyu;Kim, Insung;Kim, Huy Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.2
    • /
    • pp.485-500
    • /
    • 2018
  • As the size of the system and network environment grows and the network structure and the system configuration change frequently, network administrators have difficulty managing the status manually and identifying real-time changes. In this paper, we suggest a system that scans dynamic network information in real time, scores vulnerability of network devices, generates all potential attack paths, and visualizes them using attack graph. We implemented the proposed algorithm based attack graph; and we demonstrated that it can be applicable in MTD concept based defense system by simulating on dynamic virtual network environment with SDN.

An Approach for Applying Network-based Moving Target Defense into Internet of Things Networks

  • Park, Tae-Keun;Park, Kyung-Min;Moon, Dae-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.9
    • /
    • pp.35-42
    • /
    • 2019
  • In this paper, we propose an approach to apply network-based moving target defense into Internet of Things (IoT) networks. The IoT is a technology that provides the high interconnectivity of things like electronic devices. However, cyber security risks are expected to increase as the interconnectivity of such devices increases. One recent study demonstrated a man-in-the-middle attack in the statically configured IoT network. In recent years, a new approach to cyber security, called the moving target defense, has emerged as a potential solution to the challenge of static systems. The approach continuously changes system's attack surface to prevent attacks. After analyzing IPv4 / IPv6-based moving target defense schemes and IoT network-related technologies, we present our approach in terms of addressing systems, address mutation techniques, communication models, network configuration, and node mobility. In addition, we summarize the direction of future research in relation to the proposed approach.

Network Attack and Defense Game Theory Based on Bayes-Nash Equilibrium

  • Liu, Liang;Huang, Cheng;Fang, Yong;Wang, Zhenxue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.5260-5275
    • /
    • 2019
  • In the process of constructing the traditional offensive and defensive game theory model, these are some shortages for considering the dynamic change of security risk problem. By analysing the critical indicators of the incomplete information game theory model, incomplete information attack and defense game theory model and the mathematical engineering method for solving Bayes-Nash equilibrium, the risk-averse income function for information assets is summarized as the problem of maximising the return of the equilibrium point. To obtain the functional relationship between the optimal strategy combination of the offense and defense and the information asset security probability and risk probability. At the same time, the offensive and defensive examples are used to visually analyse and demonstrate the incomplete information game and the Harsanyi conversion method. First, the incomplete information game and the Harsanyi conversion problem is discussed through the attack and defense examples and using the game tree. Then the strategy expression of incomplete information static game and the engineering mathematics method of Bayes-Nash equilibrium are given. After that, it focuses on the offensive and defensive game problem of unsafe information network based on risk aversion. The problem of attack and defense is obtained by the issue of maximizing utility, and then the Bayes-Nash equilibrium of offense and defense game is carried out around the security risk of assets. Finally, the application model in network security penetration and defense is analyzed by designing a simulation example of attack and defense penetration. The analysis results show that the constructed income function model is feasible and practical.

SOCMTD: Selecting Optimal Countermeasure for Moving Target Defense Using Dynamic Game

  • Hu, Hao;Liu, Jing;Tan, Jinglei;Liu, Jiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.4157-4175
    • /
    • 2020
  • Moving target defense, as a 'game-changing' security technique for network warfare, realizes proactive defense by increasing network dynamics, uncertainty and redundancy. How to select the best countermeasure from the candidate countermeasures to maximize defense payoff becomes one of the core issues. In order to improve the dynamic analysis for existing decision-making, a novel approach of selecting the optimal countermeasure using game theory is proposed. Based on the signal game theory, a multi-stage adversary model for dynamic defense is established. Afterwards, the payoffs of candidate attack-defense strategies are quantified from the viewpoint of attack surface transfer. Then the perfect Bayesian equilibrium is calculated. The inference of attacker type is presented through signal reception and recognition. Finally the countermeasure for selecting optimal defense strategy is designed on the tradeoff between defense cost and benefit for dynamic network. A case study of attack-defense confrontation in small-scale LAN shows that the proposed approach is correct and efficient.

A Blockchain-enabled Multi-domain DDoS Collaborative Defense Mechanism

  • Huifen Feng;Ying Liu;Xincheng Yan;Na Zhou;Zhihong Jiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.916-937
    • /
    • 2023
  • Most of the existing Distributed Denial-of-Service mitigation schemes in Software-Defined Networking are only implemented in the network domain managed by a single controller. In fact, the zombies for attackers to launch large-scale DDoS attacks are actually not in the same network domain. Therefore, abnormal traffic of DDoS attack will affect multiple paths and network domains. A single defense method is difficult to deal with large-scale DDoS attacks. The cooperative defense of multiple domains becomes an important means to effectively solve cross-domain DDoS attacks. We propose an efficient multi-domain DDoS cooperative defense mechanism by integrating blockchain and SDN architecture. It includes attack traceability, inter-domain information sharing and attack mitigation. In order to reduce the length of the marking path and shorten the traceability time, we propose an AS-level packet traceability method called ASPM. We propose an information sharing method across multiple domains based on blockchain and smart contract. It effectively solves the impact of DDoS illegal traffic on multiple domains. According to the traceability results, we designed a DDoS attack mitigation method by replacing the ACL list with the IP address black/gray list. The experimental results show that our ASPM traceability method requires less data packets, high traceability precision and low overhead. And blockchain-based inter-domain sharing scheme has low cost, high scalability and high security. Attack mitigation measures can prevent illegal data flow in a timely and efficient manner.

Optimal Network Defense Strategy Selection Based on Markov Bayesian Game

  • Wang, Zengguang;Lu, Yu;Li, Xi;Nie, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5631-5652
    • /
    • 2019
  • The existing defense strategy selection methods based on game theory basically select the optimal defense strategy in the form of mixed strategy. However, it is hard for network managers to understand and implement the defense strategy in this way. To address this problem, we constructed the incomplete information stochastic game model for the dynamic analysis to predict multi-stage attack-defense process by combining Bayesian game theory and the Markov decision-making method. In addition, the payoffs are quantified from the impact value of attack-defense actions. Based on previous statements, we designed an optimal defense strategy selection method. The optimal defense strategy is selected, which regards defense effectiveness as the criterion. The proposed method is feasibly verified via a representative experiment. Compared to the classical strategy selection methods based on the game theory, the proposed method can select the optimal strategy of the multi-stage attack-defense process in the form of pure strategy, which has been proved more operable than the compared ones.

A Study on Building an Integration Security System Applying Virtual Clustering (Virtual Clustering 기법을 적용한 Integration Security System 구축에 관한 연구)

  • Seo, Woo-Seok;Park, Dea-Woo;Jun, Moon-Seog
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.2
    • /
    • pp.101-110
    • /
    • 2011
  • Recently, an attack to an application incapacitates the intrusion detection rule, the defense policy for a network and database and induces intrusion incidents. Thus, it is necessary to study integration security to ensure the security of an internal network and database from that attack. This article is about building an integration security system to prevent an attack to an application set with intrusion detection rules. It responds to network-based attack through detection, disperses attack with the internal integration security system through virtual clustering and load balancing, and sets up defense policy for attacking destination packets, analyzes and records attack packets, and updates rules through monitoring and analysis. Moreover, this study establishes defense policy according to attacking types to settle access traffic through virtual machine partition policy and suggests an integration security system applied to prevent attack and tests its defense. The result of this study is expected to provide practical data for integration security defense for hacking attack from outside.

Cyber Attack and Defense Modeling Using Vulnerability Metrics (취약성 매트릭스를 이용한 사이버 공격 및 방어 모델링)

  • 이장세;지승도
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2003.06a
    • /
    • pp.191-198
    • /
    • 2003
  • The major objective of this paper is to perform modeling of cyber attack and defense using vulnerability metrics. To do this, we have attempted command level modeling for realizing an approach of functional level proposed by Nong Ye, and we have defined vulnerability metrics that are able to apply to DEVS(Discrete Event System Specification) and performed modeling of cyber attack and defense using this. Our approach is to show the difference from others in that (ⅰ) it is able to analyze behaviors of system emerged by interaction with functional elements of components composing network and each other, (ⅱ) it is able to analyze vulnerability in quantitative manner, and (ⅲ) it is able to establish defense suitably by using the analyzed vulnerability. We examine an example of vulnerability analysis on the cyber attack and defense through case study.

  • PDF

Cyber Attack and Defense Modeling Using Vulnerability Metrics (취약성 매트릭스를 이용한 사이버 공격 및 방어 모델링)

  • Lee Jang-Se;Chi Sung-Do;Choi Gyoo-Seok
    • Journal of the Korea Society for Simulation
    • /
    • v.13 no.3
    • /
    • pp.11-20
    • /
    • 2004
  • The major objective of this paper is to perform modeling of cyber attack and defense using vulnerability metrics. To do this, we have attempted command level modeling for realizing an approach of functional level proposed by Nong Ye, and we have defined vulnerability metrics that are able to apply to DEVS(Discrete Event System Specification) and performed modeling of cyber attack and defense using this. Our approach is to show the difference from others in that (i) it is able to analyze behaviors of systems being emerged by interaction between functional elements of network components, (ii) it is able to analyze vulnerability in quantitative manner, and (iii) it is able to establish defense suitably by using the analyzed vulnerability. We examine an example of vulnerability analysis on the cyber attack and defense through case study.

  • PDF

Attack Surface Expansion through Decoy Trap for Protected Servers in Moving Target Defense

  • Park, Tae-Keun;Park, Kyung-Min;Moon, Dae-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.10
    • /
    • pp.25-32
    • /
    • 2019
  • In this paper, we propose a method to apply the attack surface expansion through decoy traps to a protected server network. The network consists of a large number of decoys and protected servers. In the network, each protected server dynamically mutates its IP address and port numbers based on Hidden Tunnel Networking that is a network-based moving target defense scheme. The moving target defense is a new approach to cyber security and continuously changes system's attack surface to prevent attacks. And, the attack surface expansion is an approach that uses decoys and decoy groups to protect attacks. The proposed method modifies the NAT table of the protected server with a custom chain and a RETURN target in order to make attackers waste all their time and effort in the decoy traps. We theoretically analyze the attacker success rate for the protected server network before and after applying the proposed method. The proposed method is expected to significantly reduce the probability that a protected server will be identified and compromised by attackers.