• Title/Summary/Keyword: network selection

Search Result 1,753, Processing Time 0.037 seconds

Queuing Analysis of Opportunistic in Network Selection for Secondary Users in Cognitive Radio Systems

  • Tuan, Le Ahn;Hong, Choong-Seon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06d
    • /
    • pp.265-267
    • /
    • 2012
  • This paper analyzes network selection issues of secondary users (SUs) in Cooperative Cognitive Radio Networks (CRNs) by utilizing Queuing Model. Coordinating with Handover Cost-Based Network selection, this paper also addresses an opportunity for the secondary users (SUs) to enhance QoS as well as economics efficiency. In this paper, network selection of SUs is the optimal association between Overall System Time Minimization Problem evaluation of Secondary Connection (SC) and Handover Cost-Based Network selection. This will be illustrated by simulation results.

Generalization of Road Network using Logistic Regression

  • Park, Woojin;Huh, Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.2
    • /
    • pp.91-97
    • /
    • 2019
  • In automatic map generalization, the formalization of cartographic principles is important. This study proposes and evaluates the selection method for road network generalization that analyzes existing maps using reverse engineering and formalizes the selection rules for the road network. Existing maps with a 1:5,000 scale and a 1:25,000 scale are compared, and the criteria for selection of the road network data and the relative importance of each network object are determined and analyzed using $T{\ddot{o}}pfer^{\prime}s$ Radical Law as well as the logistic regression model. The selection model derived from the analysis result is applied to the test data, and road network data for the 1:25,000 scale map are generated from the digital topographic map on a 1:5,000 scale. The selected road network is compared with the existing road network data on the 1:25,000 scale for a qualitative and quantitative evaluation. The result indicates that more than 80% of road objects are matched to existing data.

Simple Relay Selection for Wireless Network Coding System

  • Kim, Jang-Seob;Lee, Jung-Woo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.07a
    • /
    • pp.310-313
    • /
    • 2011
  • Broadcasting nature of wireless communications makes it possible to apply opportunistic network coding (OPNC) by overhearing transmitted packets from a source to sink nodes. However, it is difficult to apply network coding to the topology of multiple relay and sink nodes. We propose to use relay node selection, which finds a proper node for network coding since the OPNC alone in the topology of multiple relays and sink nodes cannot guarantee network coding gain. The proposed system is a novel combination of wireless network coding and relay selection, which is a key contribution of this paper. In this paper, with the consideration of channel state and potential network coding gain, we propose relay node selection techniques, and show performance gain over the conventional OPNC and a channel-based selection algorithm in terms of average system throughput.

  • PDF

FAFS: A Fuzzy Association Feature Selection Method for Network Malicious Traffic Detection

  • Feng, Yongxin;Kang, Yingyun;Zhang, Hao;Zhang, Wenbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.240-259
    • /
    • 2020
  • Analyzing network traffic is the basis of dealing with network security issues. Most of the network security systems depend on the feature selection of network traffic data and the detection ability of malicious traffic in network can be improved by the correct method of feature selection. An FAFS method, which is short for Fuzzy Association Feature Selection method, is proposed in this paper for network malicious traffic detection. Association rules, which can reflect the relationship among different characteristic attributes of network traffic data, are mined by association analysis. The membership value of association rules are obtained by the calculation of fuzzy reasoning. The data features with the highest correlation intensity in network data sets are calculated by comparing the membership values in association rules. The dimension of data features are reduced and the detection ability of malicious traffic detection algorithm in network is improved by FAFS method. To verify the effect of malicious traffic feature selection by FAFS method, FAFS method is used to select data features of different dataset in this paper. Then, K-Nearest Neighbor algorithm, C4.5 Decision Tree algorithm and Naïve Bayes algorithm are used to test on the dataset above. Moreover, FAFS method is also compared with classical feature selection methods. The analysis of experimental results show that the precision and recall rate of malicious traffic detection in the network can be significantly improved by FAFS method, which provides a valuable reference for the establishment of network security system.

Node Selection Algorithm for Cooperative Transmission in the Wireless Sensor Networks (무선 센서네트워크에서 협업전송을 위한 노드선택 알고리즘)

  • Gao, Xiang;Park, Hyung-Kun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1238-1240
    • /
    • 2009
  • In the wireless sensor network, cooperative transmission is an effective technique to combat multi-path fading and reduce transmitted power. Relay selection and power allocation are important technical issues to determine the performance of cooperative transmission. In this paper, we proposed a new multi-relay selection and power allocation algorithm to increase network lifetime. The proposed relay selection scheme minimizes the transmitted power and increase the network lifetime by considering residual power as well as channel conditions. Simulation results show that proposed algorithm obtains much longer network lifetime than the conventional algorithm.

Energy-balance node-selection algorithm for heterogeneous wireless sensor networks

  • Khan, Imran;Singh, Dhananjay
    • ETRI Journal
    • /
    • v.40 no.5
    • /
    • pp.604-612
    • /
    • 2018
  • To solve the problem of unbalanced loads and the short network lifetime of heterogeneous wireless sensor networks, this paper proposes a node-selection algorithm based on energy balance and dynamic adjustment. The spacing and energy of the nodes are calculated according to the proximity to the network nodes and the characteristics of the link structure. The direction factor and the energy-adjustment factor are introduced to optimize the node-selection probability in order to realize the dynamic selection of network nodes. On this basis, the target path is selected by the relevance of the nodes, and nodes with insufficient energy values are excluded in real time by the establishment of the node-selection mechanism, which guarantees the normal operation of the network and a balanced energy consumption. Simulation results show that this algorithm can effectively extend the network lifetime, and it has better stability, higher accuracy, and an enhanced data-receiving rate in sufficient time.

An Analytical Hierarchy Process Combined with Game Theory for Interface Selection in 5G Heterogeneous Networks

  • Chowdhury, Mostafa Zaman;Rahman, Md. Tashikur;Jang, Yeong Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1817-1836
    • /
    • 2020
  • Network convergence is considered as one of the key solutions to the problem of achieving future high-capacity and reliable communications. This approach overcomes the limitations of separate wireless technologies. Efficient interface selection is one of the most important issues in convergence networks. This paper solves the problem faced by users of selecting the most appropriate interface in the heterogeneous radio-access network (RAN) environment. Our proposed scheme combines a hierarchical evaluation of networks and game theory to solve the network-selection problem. Instead, of considering a fixed weight system while ranking the networks, the proposed scheme considers the service requirements, as well as static and dynamic network attributes. The best network is selected for a particular service request. To establish a hierarchy among the network-evaluation criteria for service requests, an analytical hierarchy process (AHP) is used. To determine the optimum network selection, the network hierarchy is combined with game theory. AHP attains the network hierarchy. The weights of different access networks for a service are calculated. It is performed by combining AHP scores considering user's experienced static network attributes and dynamic radio parameters. This paper provides a strategic game. In this game, the network scores of service requests for various RANs and the user's willingness to pay for these services are used to model a network-versus-user game. The Nash equilibria signify those access networks that are chosen by individual user and result maximum payoff. The examples for the interface selection illustrate the effectiveness of the proposed scheme.

Network Slice Selection Function on M-CORD (M-CORD 기반의 네트워크 슬라이스 선택 기능)

  • Rivera, Javier Diaz;Khan, Talha Ahmed;Asif, Mehmood;Song, Wang-Cheol
    • KNOM Review
    • /
    • v.21 no.2
    • /
    • pp.35-45
    • /
    • 2018
  • As Network Slicing functionality gets applied to mobile networking, a mechanism that enables the selection of network slices becomes indispensable. Following the 3GPP Technical Specification for the 5G Architecture, the inclusion of the Network Slice Selection Function (NSSF) in order to leverage the process of slice selection is apparent. However, actual implementation of this network function needs to deal with the dynamic changes of network instances, due to this, a platform that supports the orchestration of Virtual Network Functions (VNF) is required. Our proposed solution include the use of the Central Office Rearchitected as a Data Center (CORD) platform, with the specified profile for mobile networks (M-CORD) that integrates a service orchestrator (XOS) alongside solutions oriented to Software Defined Networking (SDN), Network Function Virtualization (VNF) and virtual machine management through OpenStack, in order to provide the right ecosystem where our implementation of NSSF can obtain slice information dynamically by relying on synchronization between back-end services and network function instances.

Policy-based Dynamic Channel Selection Architecture for Cognitive Radio Network (무선인지 기술 기반의 정책에 따른 동적 채널 선택 구조)

  • Na, Do-Hyun;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.6B
    • /
    • pp.358-366
    • /
    • 2007
  • Recently, FCC(Federal Communications Commission) has considered for that unlicensed device leases licensed devices' channel to overcome shortage of communication channels. Therefore, IEEE 802.22 WRAN(Wireless Regional Area Networks) working group progresses CR (Cognitive Radio) technique that is able to sense and adopt void channels that are not being occupied by the licensed devices. Channel selection is of the utmost importance because it can affect the whole system performance in CR network. Thus, we propose a policy-based dynamic channel selection architecture for cognitive radio network to achieve an efficient communication. We propose three kinds of method for channel selection; the first one is weighted channel selection, the second one is sequential channel selection, and the last one is combined channel selection. We can obtain the optimum channel list and allocates channels dynamically using the proposed protocol.

Edge-Node Deployed Routing Strategies for Load Balancing in Optical Burst Switched Networks

  • Barradas, Alvaro L.;Medeiros, Maria Do Carmo R.
    • ETRI Journal
    • /
    • v.31 no.1
    • /
    • pp.31-41
    • /
    • 2009
  • Optical burst switching is a promising switching paradigm for the next IP-over-optical network backbones. However, its burst loss performance is greatly affected by burst contention. Several methods have been proposed to address this problem, some of them requiring the network to be flooded by frequent state dissemination signaling messages. In this work, we present a traffic engineering approach for path selection with the objective of minimizing contention using only topological information. The main idea is to balance the traffic across the network to reduce congestion without incurring link state dissemination protocol penalties. We propose and evaluate two path selection strategies that clearly outperform shortest path routing. The proposed path selection strategies can be used in combination with other contention resolution methods to achieve higher levels of performance and support the network reaching stability when it is pushed under stringent working conditions. Results show that the network connectivity is an important parameter to consider.

  • PDF