• Title/Summary/Keyword: neurogenesis

Search Result 124, Processing Time 0.022 seconds

Adult Neurogenesis in Insulted Brain

  • Kim, Byung-Woo;Son, Hyeon
    • Toxicological Research
    • /
    • v.23 no.2
    • /
    • pp.107-114
    • /
    • 2007
  • Although there are some questions about the venues of adult neurogenesis, it is undoubtedly accepted that new neurons are born in adult brains. Adult neurogenesis is regulated by a wide array of factors. Insults harmful to brain, such as neurodegenerative diseases, seizure, ischemia and exposure to drugs of abuse, are intricately related to adult neurogenesis. Whereas neurodegenerative diseases are characterized by death or functional loss of specific neurons, recent studies report that they can be accompanied by neurogenesis. In addition, alcohol and drugs of abuse which have been reputed to cause irreversible damage to brain can also generate newly born cells in adult brain. As yet, however, we have little knowledge of the functional significance and roles of adult neurogenesis under pathological settings, not to mention under physiological settings. Accordingly, in this review we briefly summarize the results of studies which focus on adult neurogenesis in insulted brain, instead of trying to draw hurried conclusion regarding the relationship between adult neurogenesis and brain insults.

Stress, Inflammation and Neurogenesis in Major Depression (주요우울증에서 스트레스, 염증반응, 신경조직발생)

  • Kim, Yong-Ku
    • Korean Journal of Biological Psychiatry
    • /
    • v.18 no.4
    • /
    • pp.169-175
    • /
    • 2011
  • Stress, a risk factor of major depression induces cytokine mediated inflammation and decreased neurogenesis. In patients with major depression, significant increases of pro-inflammatory cytokines have been consistently reported. The pro-inflammatory cytokines can stimulate the hypothalamic-pituitary-adrenal (HPA) axis to release glucocorticoids. In the brain, microglia and play a role of immune activation in response to stress. Increased pro-inflammatory cytokine play a role in restricting neurogenesis in the brain. Although neurogenesis may not be essential for the development of depression, it may be required for clinically effective antidepressant treatment. Hence, stimulation of neurogenesis is regarded as a promising strategy for new antidepressant targets. This review introduces changes in neurotransmitter, cytokine and neurogenesis in major depression and explores the possible relationship between pro-inflammatory cytokines and neurogenesis related to stress in major depression.

Characterization of age- and stage-dependent impaired adult subventricular neurogenesis in 5XFAD mouse model of Alzheimer's disease

  • Hyun Ha Park;Byeong-Hyeon Kim;Seol Hwa Leem;Yong Ho Park;Hyang-Sook Hoe;Yunkwon Nam;Sujin Kim;Soo Jung Shin;Minho Moon
    • BMB Reports
    • /
    • v.56 no.9
    • /
    • pp.520-525
    • /
    • 2023
  • Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline. Several recent studies demonstrated that impaired adult neurogenesis could contribute to AD-related cognitive impairment. Adult subventricular zone (SVZ) neurogenesis, which occurs in the lateral ventricles, plays a crucial role in structural plasticity and neural circuit maintenance. Alterations in adult SVZ neurogenesis are early events in AD, and impaired adult neurogenesis is influenced by the accumulation of intracellular Aβ. Although Aβ-overexpressing transgenic 5XFAD mice are an AD animal model well representative of Aβ-related pathologies in the brain, the characterization of altered adult SVZ neurogenesis following AD progression in 5XFAD mice has not been thoroughly examined. Therefore, we validated the characterization of adult SVZ neurogenesis changes with AD progression in 2-, 4-, 8-, and 11-monthold male 5XFAD mice. We first investigated the Aβ accumulation in the SVZ using the 4G8 antibody. We observed intracellular Aβ accumulation in the SVZ of 2-month-old 5XFAD mice. In addition, 5XFAD mice exhibited significantly increased Aβ deposition in the SVZ with age. Next, we performed a histological analysis to investigate changes in various phases of adult neurogenesis, such as quiescence, proliferation, and differentiation, in SVZ. Compared to age-matched wild-type (WT) mice, quiescent neural stem cells were reduced in 5XFAD mice from 2-11 months of age. Moreover, proliferative neural stem cells were decreased in 5XFAD mice from 2 to 8 months of age. Furthermore, differentiations of neuroblasts were diminished in 5XFAD mice from 2-11 months of age. Intriguingly, we found that adult SVZ neurogenesis was reduced with aging in healthy mice. Taken together, our results revealed that impairment of adult SVZ neurogenesis appears with aging or AD progression.

Effects of Prenatal Cnidium officinale Makino Treatment on Spatial Memory and Neurogenesis in the Hippocampus of Rat Pups Born from Maternal Rats Exposed to Noise Stress during Pregnancy

  • Song, Yun-Kyung;Lim, Hyung-Ho;Hong, Seo-Young
    • The Journal of Korean Medicine
    • /
    • v.27 no.4
    • /
    • pp.125-134
    • /
    • 2006
  • During the prenatal period, the development of the individual is influenced by a host of environmental factors. Exposure to noise stress during pregnancy was determined to result in the retardation of growth, a reduction in neurogenesis, and an impairment of spatial learning ability in the rat pups. In the present study, we have attempted to characterize the effects of prenatal treatment with Cnidium officinale Makino on spatial memory and neurogenesis in the hippocampus of rat pups born from maternal rats exposed to noise stress during pregnancy. Prenatal treatment with Cnidium officinale Makino was shown to increase neurogenesis and enhanced spatial learning ability in rat pups born from maternal rats exposed to noise stress. In this study, we have determined that prenatal treatment with Cnidium officinale Makino can stimulate spatial development and neurogenesis in the brain of the fetuses exposed to prenatal stresses.

  • PDF

Effect of Gentianae Radix on Neurogenesis and Apoptosis in Hippocampus of Ethanol-induced Newborn Rats (급성 알코올 중독 어린 흰쥐의 해마 치상회에서 용담추출물이 신경세포생성과 세포사멸에 미치는 영향)

  • Lee, Jin-Gyu;Kim, E-Hwa;Lee, Jae-Hyok
    • Journal of Oriental Neuropsychiatry
    • /
    • v.21 no.2
    • /
    • pp.29-44
    • /
    • 2010
  • Objectives : The purpose of this study was to investigate the effect of Gentianae Radix on neurogenesis and apoptosis in ethanol- induced newborn rats hippocampus dentate gyrus. Methods : In vivo, laboratory animals were divided into three groups; Normal group(N), Control group(C) and Treated group (TG)(n=7 for each group). N were treated saline daily for five days. C were treated 1.5 g/kg ethanol and saline daily for five days. TG were treated 1.5 g/kg ethanol and 300 mg/kg Gentianae Radix daily for five days. BrdU(5-bromo-2-deoxyuridine) assay was used to test neurogenesis in the dentate gyrus. And TUNEL(Terminal deoxynucleotidyl transferase dUTP nick end labeling) assay was used to test apoptosis in the dentate gyrus. Three groups were measured body weight, serum ethanol concentration, BrdU-positive cells and TUNEL-positive cells in the dentate gyrus. In vitro, MTT(3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to test viability in SK-N-MC cells. BrdU assay was used to test neurogenesis in SK-N-MC cells. DNA fragmentation and caspase-3 enzyme activity assay were used to test apoptosis in SK-N-MC cells. And treated ethanol and Gentianae Radix of all in vitro tests were made various concentration. Results : In vivo, Gentianae Radix modulated ethanol-induced neurogenesis and apoptosis in newborn rats hippocampus dentate gyrus. In vitro, TG 100 ${\mu}g/ml$ have significantly modulated ethanol-induced neurogenesis and apoptosis in SK-N-MC cells. And only TG 100 ${\mu}g/ml$ have significantly protected SK-N-MC cells from ethanol-induced cytotoxicity. Conclusions : Gentianae Radix may have the effect that modulated ethanol-induced neurogenesis and apoptosis in SK-N-MC cells.

Adult hippocampal neurogenesis and related neurotrophic factors

  • Lee, Eu-Gene;Son, Hyeon
    • BMB Reports
    • /
    • v.42 no.5
    • /
    • pp.239-244
    • /
    • 2009
  • New neurons are continually generated in the subgranular zone of the dentate gyrus and in the subventricular zone of the lateral ventricles of the adult brain. These neurons proliferate, differentiate, and become integrated into neuronal circuits, but how they are involved in brain function remains unknown. A deficit of adult hippocampal neurogenesis leads to defective spatial learning and memory, and the hippocampi in neuropsychiatric diseases show altered neurogenic patterns. Adult hippocampal neurogenesis is not only affected by external stimuli but also regulated by internal growth factors including BDNF, VEGF and IGF-1. These factors are implicated in a broad spectrum of pathophysiological changes in the human brain. Elucidation of the roles of such neurotropic factors should provide insight into how adult hippocampal neurogenesis is related to psychiatric disease and synaptic plasticity.

Neurogenesis in the Adult Brain (성체 뇌 조직의 신경발생)

  • Kim, Sik-Hyun;Kim, Sang-Su
    • PNF and Movement
    • /
    • v.6 no.3
    • /
    • pp.37-51
    • /
    • 2008
  • Purpose : This paper focuses on the emerging concept that adult central nervous system neurogenesis can be regulated by various physical activity, enriched environment, and pathological conditions. Neurogenesis-the production of new neuron-is an ongoing process that persists in the adult brain of mammalian, including humans. Result : The adult brain was thought be limited in its regenerative function. However, this concepts changed, recent evidence of neurogenesis in certain adult brain areas such as SVZ(subventricular zone) and SGZ(subgranular zone) in hippocampus, raised possibility for improved treatment for patient with stroke. Neural plasticity has an adaptive purpose, because an ability of the brain to change in response to peripheral stimulation, physical activity, experience, and injury. Conclusions : The major function of the neurogenesis in adult brain seems to be replacing the neuron that die regularly in discrete adult brain regions. These cells are capable of functionally integrating into neighboring neural cells, and reconnecting to the correct neural networks. This review suggest that various intervention, including physical activity, voluntary movement training, skilled forelimb reaching training, and enriched environment, induced neural cell production in certain adult brain, and associated with functional recovery after stroke.

  • PDF

Toll-like receptor 2 promotes neurogenesis from the dentate gyrus after photothrombotic cerebral ischemia in mice

  • Seong, Kyung-Joo;Kim, Hyeong-Jun;Cai, Bangrong;Kook, Min-Suk;Jung, Ji-Yeon;Kim, Won-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.2
    • /
    • pp.145-153
    • /
    • 2018
  • The subgranular zone (SGZ) of hippocampal dentate gyrus (HDG) is a primary site of adult neurogenesis. Toll-like receptors (TLRs), are involved in neural system development of Drosophila and innate immune response of mammals. TLR2 is expressed abundantly in neurogenic niches such as adult mammalian hippocampus. It regulates adult hippocampal neurogenesis. However, the role of TLR2 in adult neurogenesis is not well studied in global or focal cerebral ischemia. Therefore, this study aimed to investigate the role of TLR2 in adult neurogenesis after photochemically induced cerebral ischemia. At 7 days after photothrombotic ischemic injury, the number of bromodeoxyuridine (BrdU)-positive cells was increased in both TLR2 knock-out (KO) mice and wild-type (WT) mice. However, the increment rate of BrdU-positive cells was lower in TLR2 KO mice compared to that in WT mice. The number of doublecortin (DCX) and neuronal nuclei (NeuN)-positive cells in HDG was decreased after photothrombotic ischemia in TLR2 KO mice compared to that in WT mice. The survival rate of cells in HDG was decreased in TLR2 KO mice compared to that in WT mice. In contrast, the number of cleaved-caspase 3 (apoptotic marker) and the number of GFAP (glia marker)/BrdU double-positive cells in TLR2 KO mice were higher than that in WT mice. These results suggest that TLR2 can promote adult neurogenesis from neural stem cell of hippocampal dentate gyrus through increasing proliferation, differentiation, and survival from neural stem cells after ischemic injury of the brain.

PV.1 induced by FGF-Xbra functions as a repressor of neurogenesis in Xenopus embryos

  • Yoon, Jaeho;Kim, Jung-Ho;Lee, Sung-Young;Kim, SungChan;Park, Jae-Bong;Lee, Jae-Yong;Kim, Jaebong
    • BMB Reports
    • /
    • v.47 no.12
    • /
    • pp.673-678
    • /
    • 2014
  • During Xenopus early development, FGF signaling is involved in mesoderm formation and neurogenesis by modulating various signaling cascades. FGF-MAPK signaling induces Xbra expression, which maintains mesodermal fate through an autocatalytic-loop. Interestingly, previous reports have demonstrated that basic FGF (bFGF) treatment alone does not induce neurogenesis in ectodermal explants, even though FGF signaling inhibits BMP signaling via phosphorylation in Smad1 linker region. In addition, the overexpression of dominantnegative Xbra induces neurogenesis in ectodermal explants. However, the detailed mechanism underlying these phenomena has not yet been clarified. In this work, we showed that bFGF-Xbra signaling increased the PV.1 expression. DN-Xbra was found to decrease PV.1 expression, and the co-injection of PV.1 with DN-Xbra reduced neurogenesis in ectodermal explants. Furthermore, the knockdown of PV.1 induced neurogenesis in bFGF-treated ectodermal explants. Taken together, our results demonstrate that FGF-Xbra signaling induces PV.1 expression and that PV.1 functions as a neural repressor in the FGF-treated ectoderm.

An Aminopropyl Carbazole Derivative Induces Neurogenesis by Increasing Final Cell Division in Neural Stem Cells

  • Shin, Jae-Yeon;Kong, Sun-Young;Yoon, Hye Jin;Ann, Jihyae;Lee, Jeewoo;Kim, Hyun-Jung
    • Biomolecules & Therapeutics
    • /
    • v.23 no.4
    • /
    • pp.313-319
    • /
    • 2015
  • P7C3 and its derivatives, 1-(3,6-dibromo-9H-carbazol-9-yl)-3-(p-tolylamino)propan-2-ol (1) and N-(3-(3,6-dibromo-9H-carbazol-9-yl)-2-hydroxypropyl)-N-(3-methoxyphenyl)-4-methylbenzenesulfonamide (2), were previously reported to increase neurogenesis in rat neural stem cells (NSCs). Although P7C3 is known to increase neurogenesis by protecting newborn neurons, it is not known whether its derivatives also have protective effects to increase neurogenesis. In the current study, we examined how 1 induces neurogenesis. The treatment of 1 in NSCs increased numbers of cells in the absence of epidermal growth factor (EGF) and fibroblast growth factor 2 (FGF2), while not affecting those in the presence of growth factors. Compound 1 did not induce astrocytogenesis during NSC differentiation. 5-Bromo-2'-deoxyuridine (BrdU) pulsing experiments showed that 1 significantly enhanced BrdU-positive neurons. Taken together, our data suggest that 1 promotes neurogenesis by the induction of final cell division during NSC differentiation.