• Title/Summary/Keyword: neuroinflammation

Search Result 139, Processing Time 0.02 seconds

Glia as a Link between Neuroinflammation and Neuropathic Pain

  • Jha, Mithilesh Kumar;Jeon, Sang-Min;Suk, Kyoung-Ho
    • IMMUNE NETWORK
    • /
    • v.12 no.2
    • /
    • pp.41-47
    • /
    • 2012
  • Contemporary studies illustrate that peripheral injuries activate glial components of the peripheral and central cellular circuitry. The subsequent release of glial stressors or activating signals contributes to neuropathic pain and neuroinflammation. Recent studies document the importance of glia in the development and persistence of neuropathic pain and neuroinflammation as a connecting link, thereby focusing attention on the glial pathology as the general underlying factor in essentially all age-related neurodegenerative diseases. There is wide agreement that excessive glial activation is a key process in nervous system disorders involving the release of strong pro-inflammatory cytokines, which can trigger worsening of multiple disease states. This review will briefly discuss the recent findings that have shed light on the molecular and cellular mechanisms of glia as a connecting link between neuropathic pain and neuroinflammation.

Effects of Red ginseng on neuroinflammation in neurodegenerative diseases

  • Min Yeong Lee;Mikyung Kim
    • Journal of Ginseng Research
    • /
    • v.48 no.1
    • /
    • pp.20-30
    • /
    • 2024
  • Red ginseng (RG) is widely used as a herbal medicine. As the human lifespan has increased, numerous diseases have developed, and RG has also been used to treat various diseases. Neurodegenerative diseases are major problems that modern people face through their lives. Neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis are featured by progressive nerve system damage. Recently, neuroinflammation has emerged as a degenerative factor and is an immune response in which cytokines with nerve cells that constitute the nervous system. RG, a natural herbal medicine with fewer side effects than chemically synthesized drugs, is currently in the spotlight. Therefore, we reviewed studies reporting the roles of RG in treating neuroinflammation and neurodegenerative diseases and found that RG might help alleviate neurodegenerative diseases by regulating neuroinflammation.

Attenuation of β-amyloid-induced neuroinflammation by KHG21834 in vivo

  • Kim, Eun-A;Hahn, Hoh-Gyu;Kim, Tae-Ue;Choi, Soo-Young;Cho, Sung-Woo
    • BMB Reports
    • /
    • v.43 no.6
    • /
    • pp.413-418
    • /
    • 2010
  • Beta-Amyloid ($A{\beta}$)-induced neuroinflammation is one of the key events in the development of neurodegenerative disease. We previously reported that KHG21834, a benzothiazole derivative, attenuates $A{\beta}$-induced degeneration of cortical and mesencephalic neurons in vitro. In the present work, we show that KHG21834 reduces $A{\beta}$-mediated neuroinflammation in brain. In vivo intracerebroventricular infusion of KHG21834 leads to decreases in the numbers of activated astrocytes and microglia and level of proinflammatory cytokines such as interleukin-$1{\beta}$ and tumor necrosis factor-$\alpha$ induced by $A{\beta}$ in the hippocampus. This suppression of neuroinflammation is associated with decreased neuron loss, restoration of synaptic dysfunction biomarkers in the hippocampus to control level, and diminished amyloid deposition. These results may suggest the potential therapeutic efficacy of KHG21834 for the treatment of $A{\beta}$-mediated neuroinflammation.

Neuroprotective effects of paeoniflorin against neuronal oxidative stress and neuroinflammation induced by lipopolysaccharide in mice

  • Meng, Hwi Wen;Lee, Ah Young;Kim, Hyun Young;Cho, Eun Ju;Kim, Ji Hyun
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.1
    • /
    • pp.23-31
    • /
    • 2022
  • Oxidative stress and neuroinflammation play important roles in the pathogenesis of Alzheimer's disease (AD). This study investigated the protective effects of paeoniflorin (PF) against neuronal oxidative stress and neuroinflammation in lipopolysaccharide (LPS)-induced mice. The brains of LPS-injected control group showed significantly increased neuroinflammation by activating the nuclear factor kappa B (NF-κB) pathway and increasing inflammatory mediators. However, administration of PF significantly attenuated oxidative stress by inhibiting lipid peroxidation, nitric oxide levels, and reactive oxygen species production in the brain; PF at doses of 5 and 10 mg/kg/day downregulated the expression of NF-κB pathway-related proteins and significantly decreased inflammatory mediators including inducible nitric oxide synthase and cyclooxygenase-2. Moreover, the levels of brain-derived neurotrophic factor and its receptor, tropomycin receptor kinase B, were significantly increased in PF-treated mice. Furthermore, acetylcholinesterase activity and the ration of B-cell lymphoma 2 (Bcl-2)/Bcl-2 associated X were significantly reduced by PF in the brains of LPS-induced mice, resulting in the inhibition of cholinergic dysfunction and neuronal apoptosis. Thus, we can conclude that administration of PF to mice prevents the development of LPS-induced AD pathology through the inhibition of neuronal oxidative stress and neuroinflammation, suggesting that PF has a therapeutic potential for AD.

Microglia and neuroinflammation: implications in neurodegenerative diseases

  • Suk, Kyoung-Ho
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2007.04a
    • /
    • pp.15-22
    • /
    • 2007
  • Increasing evidence indicates that microglia-driven chronic inflammatory responses playa pathological role in the central nervous system. Activation of microglia is pivotal in the initiation and progression of neuroinflammation. Inhibition of the microglial activation may provide an effective therapeutic intervention that alleviates the progression of the neurodegenerative diseases. Anti-inflammatory agents may be a useful candidate for such a therapeutic approach. Continual investigation of the mechanisms underlying microglial activation and regulation of neuroinflammation by endogenous or exogenous factors would not only lead to the discovery of novel neuroprotective agents, but also help to understand complex pathophysiology of neurodegenerative diseases.

  • PDF

Protective Effect of Protocatechuic Acid, Phenolic Compound of Momordica Charantia, against Oxidative Stress and Neuroinflammation in C6 Glial Cell (여주의 페놀성 화합물인 Protocatechuic Acid의 산화적 스트레스 개선 및 신경염증 보호 효과)

  • Kim, Ji-Hyun;Choi, Jung Ran;Cho, Eun Ju;Kim, Hyun Young
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.20 no.1
    • /
    • pp.10-19
    • /
    • 2020
  • Objectives: Oxidative stress-mediated neuroinflammation has been supposed as a crucial factor that contributes to the pathogenesis of many neurodegenerative diseases. In this study, we aimed to investigate the protective activity against oxidative stress and neuroinflammation of protocatechuic acid (PA), active phenolic compound from Momordica Charantia. Methods: Protective activity of PA from oxidative stress was performed under in vitro conditions. Our study investigated the protective mechanism of PA from neuroinflammation in cellular system using C6 glial cell. To investigate the improvement the effects on oxidative stress and neuroinflammation, we induced oxidative stress by H2O2 (100 μM) stimulation and induced neuroinflammation by treatment with lipopolysaccharide (LPS) (1 ㎍/mL) and interferon-gamma (IFN-γ) (10 ng/mL) in C6 glial cells. Results: PA showed strong radical scavenging effect against 1,1-dipenyl-2-picrylhydrazyl, hydroxy radical (·OH) and nitric oxide (NO). Under oxidative stress treated by H2O2, the result showed the increased mRNA expressions of oxidative stress markers such as nuclear factor-kappaB (NF-κB), cyclooxygenase (COX-2) and inducible nitric oxide (iNOS). However, the treatment of PA led to reduced mRNA expressions of NF-κB, COX-2 and iNOS. Moreover, PA attenuated the production of interleukin-6 and scavenged NO generated by both endotoxin LPS and IFN-γ together. Furthermore, it also reduced LPS and IFN-γ-induced mRNA expressions of iNOS and COX-2. Conclusions: In conclusion, our results collectively suggest that PA, phenolic compound of Momordica Charantia, could be a safe anti-oxidant and a promising anti-neuroinflammatory molecule for neurodegenerative diseases.

Neuroinflammation and Psychiatric Illness (신경염증과 정신질환)

  • Song, Hoo Rim;Lee, Hwa-Young;Shim, Se-Hoon;Kwon, Young-Joon
    • Korean Journal of Biological Psychiatry
    • /
    • v.23 no.1
    • /
    • pp.12-17
    • /
    • 2016
  • Neuroinflammation is one of important allostatic loads contributory to the various psychiatric illness. It is mediated mainly by glial cells, which produce both proinflammatory and antiinflammatory cytokines, and the balance of them determines the inflammatory process in the central nervous system. S100 calcium-binding protein B, which is used as an inflammatory marker is also released by glial cells. In the molecular level, oxidative stress contributes to the neuroinflammation. Their disturbances have been revealed in the psychiatric illness and related with the dysregulation of the glutamatergic and monoaminergic systems. There is a possibility to use them as disease markers. The approach for inflammation using antiinflammatory drugs and antioxidants could be connected to the development of disease-modifying treatments. Also, a searching examination about specific subtypes who are vulnerable to inflammation in the patients is required to confirm their efficacy clearly.

Botulinum Toxin A Ameliorates Neuroinflammation in the MPTP and 6-OHDA-Induced Parkinson's Disease Models

  • Ham, Hyeon Joo;Yeo, In Jun;Jeon, Seong Hee;Lim, Jun Hyung;Yoo, Sung Sik;Son, Dong Ju;Jang, Sung-Su;Lee, Haksup;Shin, Seung-Jin;Han, Sang Bae;Yun, Jae Suk;Hong, Jin Tae
    • Biomolecules & Therapeutics
    • /
    • v.30 no.1
    • /
    • pp.90-97
    • /
    • 2022
  • Recently, increasing evidence suggests that neuroinflammation may be a critical factor in the development of Parkinson's disease (PD) in addition to the ratio of acetylcholine/dopamine because dopaminergic neurons are particularly vulnerable to inflammatory attack. In this study, we investigated whether botulinum neurotoxin A (BoNT-A) was effective for the treatment of PD through its anti-neuroinflammatory effects and the modulation of acetylcholine and dopamine release. We found that BoNT-A ameliorated MPTP and 6-OHDA-induced PD progression, reduced acetylcholine release, levels of IL-1β, IL-6 and TNF-α as well as GFAP expression, but enhanced dopamine release and tyrosine hydroxylase expression. These results indicated that BoNT-A had beneficial effects on MPTP or 6-OHDA-induced PD-like behavior impairments via its anti-neuroinflammation properties, recovering dopamine, and reducing acetylcholine release.

Effect of a Sargassum serratifolium Extract on Neuroinflammation Induced by Lipopolysaccharides in Mice (LPS로 유도한 마우스의 급성신경염증에 대한 톱니모자반(Sargassum serratifolium) 추출물의 효과)

  • Choi, Min-Woo;Kim, Hyeung-Rak;Lee, Hyoung-Gon;Kim, Jae-Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.52 no.1
    • /
    • pp.81-86
    • /
    • 2019
  • The common hallmark of several neurodegenerative disorders, including Alzheimer's disease (AD), is the presence of chronic neuroinflammation, which contributes to the loss of neuronal structure and function. This study investigated the effects of an ethanolic extract of Sargassum serratifolium (SSE) in a lipopolysaccharides (LPS)-induced murine neuroinflammation model. Mice were administered SSE (100 mg/kg body weight) or vehicle for 5 days by oral gavage, and then treated with LPS or saline by intraperitoneal injection. Thereafter, the brain tissues were collected, and the expression of pro-inflammatory cytokines was analyzed by quantitative real-time RT-PCR. There was a marked increase in the spleen weight index in the LPS-treated groups, which indicated the induction of acute systemic inflammation. Based on significant increases in the levels of IL-1 and IL-6 expression, the induction of neuroinflammation was also evident in the cortex and hippocampus of the LPS-treated groups. The overall expression of IL-1 and IL-6 was decreased slightly by SSE administration, compared with the LPS group, and a marked change in IL-1 was observed in the cortex of the SSE-treated (SSE/LPS) group. These results suggest that SSE has potential as an anti-neuroinflammatory nutraceutical.