• Title/Summary/Keyword: neurotrophic factor

Search Result 218, Processing Time 0.033 seconds

Canine Mesenchymal Stem Cells Derived from Bone Marrow: Isolation, Characterization, Multidifferentiation, and Neurotrophic Factor Expression in vitro

  • Jung, Dong-In;Ha, Jeong-Im;Kim, Ju-Won;Kang, Byeong-Teck;Yoo, Jong-Hyun;Park, Chul;Lee, Jong-Hwan;Park, Hee-Myung
    • Journal of Veterinary Clinics
    • /
    • v.25 no.6
    • /
    • pp.458-465
    • /
    • 2008
  • The purpose of this study is to characterize canine mesenchymal stem cells (MSCs) derived from bone marrow (BM) for use in research on the applications of stem cells in canine models of development, physiology, and disease. BM was harvested antemortem by aspiration from the greater tubercle of the humerus of 30 normal beagle dogs. Canine BM-derived MSCs were isolated according to methods developed for other species and were characterized based on their morphology, growth traits, cell-surface antigen profiles, differentiation repertoire, immunocytochemistry results, and neurotrophic factor expression in vitro. The canine MSCs exhibited a fibroblast-like morphology with a polygonal or spindle-shaped appearance and long processes; further, their cell-surface antigen profiles were similar to those of their counterparts in other species such as rodents and humans. The canine MSCs could differentiate into osteocytes and neurons on incubation with appropriate induction media. RT-PCR analysis revealed that these cells expressed NGF, bFGF, SDF-1, and VEGF. This study demonstrated that isolating canine MSCs from BM, stem-cell technology can be applied to a large variety of organ dysfunctions caused by degenerative diseases and injuries in dogs. Furthermore, our results indicated that canine MSCs constitutively secrete endogenous factors that enhance neurogenesis and angiogenesis. Therefore, these cells are potentially useful for treating dogs affected with various neurodegenerative diseases and spinal-cord injuries.

Effects of a Single Session of Brain Yoga on Brain-Derived Neurotrophic Factor and Cognitive Short-Term Memory in Men Aged 20-29 Years

  • Yang, Hyun-Seong;Kim, Hyun-Jun;Lee, Hwa-Gyeong
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.9 no.4
    • /
    • pp.91-103
    • /
    • 2021
  • Purpose : This study aimed to evaluate the effects of a cognitive enhancement brain yoga program on short-term memory and serum brain-derived neurotrophic factor (BDNF) levels according to the cognitive state in men aged 20-29 years. Methods : Thirty healthy volunteers aged 20-29 years were divided into four groups: brain yoga group, yoga group, combined exercise group, and control group. Seven people were assigned randomly per group. A single-session intervention was conducted over 50 min and consisted of three parts: warm-up, main exercise (brain yoga, yoga, combined exercise, or non-exercise), and cool-down. Serum BDNF levels were measured using enzyme-linked immunosorbent assay, and short-term memory was evaluated using the forward number span test before and after the intervention. Results : BDNF levels significantly increased within the brain yoga group after the intervention (from 28874.37±5185.57 to 34074.80±7321.12, p=.003), whereas there were no significant differences pre-and post-intervention in the other groups. The inter-group comparison showed a significant interaction between the brain yoga group and the combined exercise group (p=.036) but no significant interaction between any of the other groups. Forward number span scores were significantly increased in the brain yoga group (from 9.43±9.83 to 23±7.92, p=.012) and theyoga group after the intervention (from 13.43±9.41 to 24.14±8.45, p=.011), whereas there were no significant changes after the intervention in any other groups. Conclusion : Our findings showed that a single-session, 50-minute brain yoga exercise improved short-term memory and increased serum BDNF levels in healthy men aged 20-29 years and that yoga improved only short-term memory in healthy men of this age group.

Effect of Neurotrophic Factors on Neuronal Stem Cell Death

  • KimKwon, Yun-Hee
    • BMB Reports
    • /
    • v.35 no.1
    • /
    • pp.87-93
    • /
    • 2002
  • Neural cell survival is an essential concern in the aging brain and many diseases of the central nervous system. Neural transplantation of the stem cells are already applied to clinical trials for many degenerative neurological diseases, including Huntington's disease, Parkinson's disease, and strokes. A critical problem of the neural transplantation is how to reduce their apoptosis and improve cell survival. Neurotrophic factors generally contribute as extrinsic cues to promote cell survival of specific neurons in the developing mammalian brains, but the survival factor for neural stem cell is poorly defined. To understand the mechanism controlling stem cell death and improve cell survival of the transplanted stem cells, we investigated the effect of plausible neurotrophic factors on stem cell survival. The neural stem cell, HiB5, when treated with PDGF prior to transplantation, survived better than cells without PDGF. The resulting survival rate was two fold for four weeks and up to three fold for twelve weeks. When transplanted into dorsal hippocampus, they migrated along hippocampal alveus and integrated into pyramidal cell layers and dentate granule cell layers in an inside out sequence, which is perhaps the endogenous pathway that is similar to that in embryonic neurogenesis. Promotion of the long term-survival and differentiation of the transplanted neural precursors by PDGF may facilitate regeneration in the aging adult brain and probably in the injury sites of the brain.

Anti-inflammatory and Neurotrophic 2H-1-Benzopyran Derivatives of Chaenomeles sinensis

  • Ha, Young Jun;Lee, Tae Hyun;Subedi, Lalita;Kim, Hye Ryeong;Moon, Gyuri;Kim, Sun Yeou;Kim, Chung Sub
    • Natural Product Sciences
    • /
    • v.28 no.1
    • /
    • pp.1-5
    • /
    • 2022
  • Two 2H-1-benzopyran derivatives, methyl 8-hydroxy-2,2-dimethyl-2H-1-benzopyran-5-carboxylate (1) and methyl 8-hydroxy-2,2-dimethyl-2H-1-benzopyran-6-carboxylate (2), including a new compound (1) were isolated from the twigs of Chaenomeles sinensis. Their chemical structures were characterized based on analysis of NMR data including 1H and 13C, COSY, HSQC, and HMBC and HRMS data. The isolated compounds (1 and 2) were assessed for their anti-neuroinflammatory activity by measuring inhibition levels of nitric oxide (NO) production in lipopolysaccharide (LPS)-activated BV-2 cells and for their neurotrophic activity by the secretion of nerve growth factor (NGF) in C6 cells. Compounds 1 and 2 exhibited powerful anti-neuroinflammatory effects with IC50 values of 17.14 and 19.30 μM, respectively, without cell toxicity, and also showed moderate effects on the stimulation of NGF secretion levels with 113.15 ± 3.54 and 130.20 ± 8.03%, respectively. The biosynthetic pathway of 1 and 2 was proposed that they would be derived from a protocatechuic acid and an isoprenyl unit.

Effects of Fetal Mesencephalic Cell Grafts on the Intrastriatal 6-hydroxydoapmine Lesioned Rats

  • Joo, Wan Seok;Nam, Eun-Joo;Im, Heh-ln;Jung, Jin-Ah;Lee, Eun-Sun;Hwang, Yu-Jin;Kim, Yong-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.5
    • /
    • pp.245-251
    • /
    • 2004
  • The effects of fetal mesencephalic cell grafts on the restoration of nigrostriatal dopaminergic function were studied in the intrastriatal 6-hydroxydopamine-lesioned rats. Four weeks after lesioning, transplantation of ventral mesencephalic cells from embryonic day 14 fetuses showed the number of tyrosine hydroxylase (TH) positive cells and fiber outgrowth in the grafted striatum, and significantly ameliorated symptomatic motor behavior of the animals, as determined by apomorphine-induced rotation. Furthermore, in substantia nigra pars compacta (SNc), the numbers of TH + cells and fibers were markedly restored. Dopamine content of ipsilateral SNc was close to that of contralateral SNc $(91.9{\pm}9.8%)$ in the transplanted animals, while the ratio was approximately 32% in sham-grafted animals. These results indicate that grafted cells restored the activity for the dopaminergic neurons located in SNc, although they were transplanted into striatum. In addition, we showed that the implanted fetal cells expressed high level of glial cell line-derived neurotrophic factor (GDNF), suggesting that the transplanted fetal cells might serve as a dopamine producer and a reservoir of neurotrophic factors. These results may be helpful in consideration of the therapeutic transplantation at early stage of PD.

Therapeutic Potential of Jeongjihwan for the Prevention and Treatment of Amnesia (정지환(定志丸)의 기억 및 인지기능 향상에 대한 효능 연구)

  • Jung, Tae-Young;Jeong, Won-Choon;Park, Jong-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.1
    • /
    • pp.37-47
    • /
    • 2011
  • This study was aimed to investigate the memory enhancing effect of Jeongjihwan against scopolamine-induced amnesia in C57BL/6 mice. To determine the effect of Jeongjihwan on the memory and cognitive function, we have injected scopolamine (1 mg/kg, i.p.) into C57BL/6 mice 30 min before beginning of behavior tests. We have conducted Y-maze, Morris water-maze, passive avoidance and fear conditioning tests to compare learning and memory functions. Scopolamine-induced behavior changes of memory impairment were significantly restored by oral administration of Jeongjihwan (100 or 200 mg/kg/day). To elucidate the molecular mechanism underlying the memory enhancing effect of Jeongjihwan, we have examined the antioxidant defense system and neurotrophic factors. Jeongjihwan treatment attenuated intracellular accumulation of reactive oxygen species and up-regulated mRNA and protein expression of antioxidant enzymes as assessed by RT-PCR and western blot analysis, respectively. Jeongjihwan also increased protein levels of brain-derived neurotrophic factor (BDNF) compared with those in the scopolamine-treated group. Furthermore, as an upstream regulator, the activation of cAMP response element-binding protein (CREB) via phosphorylation was assessed by Western blot analysis. Jeongjihwan elevated the phosphorylation of CREB (p-CREB), which seemed to be mediated partly by extracellular signal-regulated kinase1/2 (ERK1/2) and protein kinase B/Akt. These findings suggest that Jeongjihwan may have preventive and therapeutic potential in the management of amnesia.

Effects of Memory and Learning Training on Neurotropic Factor in the Hippocampus after Brain Injury in Rats (뇌손상 흰쥐에서 기억과 학습훈련이 해마의 신경 성장인자에 미치는 영향)

  • Heo, Myoung;Bang, Yoo-Soon
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.2
    • /
    • pp.309-317
    • /
    • 2009
  • This study was to investigate the effects of restoring cognition function and neurotrophic factor in the hippocampus according to memory and learning training in rats affected by brain injury. Brain injury was induced in Sprague-Dawley rats(36 rats) through middle cerebral artery occlusion(MCAo). And then experiment groups were randomly divided into three groups; Group I: Brain injury induction(n=12), Group II: the application for treadmill training after brain injury induction(n=12), Group III: the application for memory and learning training after brain injury induction(n=12). Morris water maze acquisition test and retention test were performed to test cognitive function. And the histological examination was also observed through the immunohistochemistric response of BDNF(brain-derived neurotrophic factor) in the hippocampus. For Morris water maze acquisition test, there were significant interactions among the groups with the time(p<.001). The time to find the circular platform in Group III was more shortened than in Group I, II on the 9th, 10th, 11th and 12th day. For Morris water maze retention test, there were significant differences among the groups(p<.001). The time to dwell on quadrant circular platform in Group III on the 13th day was the longest compared with other groups. And as the result of observing the immunohistochemistric response of BDNF in the hippocampus CA1, the response of immunoreactive positive in Group III on the 7th day increased more than that of Group I, II. These results suggested that the memory and learning training in rats with brain injury has a more significant impact on restoring cognitive function via the changes of neurotropic factor expression and synaptic neuroplasticity.