• Title/Summary/Keyword: neutral trehalase

Search Result 4, Processing Time 0.025 seconds

Effect of Trehalose Accumulation on the Intrinsic and Acquired Thermotolerance in a Natural Isolate, Saccharomyces cerevisiae KNU5377

  • PAIK, SANG-KYOO;HAE-SUN YUN;HO-YONG SOHN;INGNYOL JIN
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.1
    • /
    • pp.85-89
    • /
    • 2003
  • The difference in the thermotolerance between Saccharomyces cerevisiae KNU5377 and ATCC24858 was compared by assaying the amounts of trehalose accumulated under growth and heat shock conditions. Both strains exhibited similar trehalose accumulation during the growth period, but an intrinsic thermotolerance was much higher in KNU5377 than in the control strain. This result implied that some strain-specific characteristics of KNU5377, other than trehalose accumulation, primarily were responsible fur its higher intrinsic thermotolerance. Heat shock at $43^{\circ}C$ for 90 min to the exponentially growing cells resulted in the maximum level of trehalose In both strains. Trehalose accumulated at least twice more in KNU5377 by the heat shock than in the control, due to the maintenance of its neutral trehalase activity even after the heat shock. Consequently, the Increase of acquired thermotolerance in both strains correlated with an increase in the trehalose content in each strain. In conclusion, KNU5377 exhibited a well-modulated trehalose-related mechanism to accumulate more trehalose by means of maintaining neutral trehalase activity after heat shock than the control strain, thereby contributing to its acquired thermotolerance.

The Viability Change of Yeast Cell Responding to Trehalose Accumulation and Maintaining Neutral Trehalase Activity under Extracellular pH Acidified by $H_2SO_4$

  • Jin, Ingnyol;Yun, Haesun;Paik, Sanhkyoo;Kim, Ilsup;Sohn, Ho-Yong
    • Journal of Life Science
    • /
    • v.12 no.2
    • /
    • pp.47-52
    • /
    • 2002
  • Saccharomyces cerevisiae KNU5377 (KNU5377) and S. cerevisiae ATCC24858 (ATCC24858) were exposed to $H_2SO_4$ as a stress, which was added at various concentrations to a YPD media. The growth of KNU5377 was reduced to approximately 60% in the YPD media containing 40 nm sulfuric acid when compared to the non-stressed condition. When their growth was monitored during an overnight culture, two strains, KNU5377 and ATCC24858, could not grow when exposed to over 50 mM of sulfuric acid. After a short exposure to this acid for 1 h, KNU5377 exhibited stronger resistance against $H_2SO_4$ than ATCC24858. The neutral trehalase activity of KNU5377 unchanged despite under various concentrations of $H_2SO_4$. In contrast, It at of ATCC24858 was much low at higher $H_2SO_4$concentrations. Trehalose, a non-reducing disaccharide, was maximally accumulated after a short exposure to 60 nm $H_2SO_4$ for KNU5377, but it was reduced under more severe stressful conditions. These results suggest that KNU5377 should modulate the trehalose concentrations under the severe stress condition of high sulfuric acid concentrations. The most highly induced protein in the KNU5377 exposed to sulfuric acid was found to be an approximately 23 kDa protein, which was revealed to be the 605 large subunit ribosomal protein, Ll3 by FASTA search results.

  • PDF

Effect of Trehalose on Stabilization of Cellular Components and Critical Targets Against Heat Shock in Saccharomyces cerevisiae KNU5377

  • PAIK SANG-KYOO;YUN HAE-SUN;IWAHASHI HITOSHI;OBUCHI KAORU;JIN INGNYOL
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.965-970
    • /
    • 2005
  • In our previous study [14], we found that heat-shock exposure did not stimulate the neutral trehalase activity in Sacchromyces cerevisiae KNU5377, but did in ATCC24858. Consequently, the trehalose content in KNU5377 became 2.6 times higher than that in ATCC24858. Because trehalose has been shown to stabilize the structure and function of some macromolecules, the present work was focused to elucidate the relationship between trehalose content of these strains and thermal stabilities of whole cells, through differential scanning calorimetry (DSC), and to predict critical targets calculated from the hyperthermic cell killing rates. These analyses showed that the prominent DSC transition of both strains gave identical $T_m$ (transition temperature) values in exponentially growing cells, and that the $T_m$ values of critical targets was about $3^{\circ}C$ higher in KNU5377 than in ATCC24858. Both heat-shocked KNU5377 and ATCC24858 cells displayed similar shifts in their DSC transition profiles. On the other hand, the $T_m$ value of the critical target of KNU5377 was decreased by $2.1^{\circ}C$, which was still higher than ATCC24858 showing no changes. In view of these results, the intrinsic thermotolerance of KNU5377 did not appear to result from the stability of entire cellular components, but rather possibly from that of particular macromolecules, including critical targets, even though it should be investigated in more details. Although the trehalose levels in heat-shocked cells are significantly different, as described in our previous study [14], the overall pattern of thermal stabilities and their predicted critical targets in two heat-shocked strains seemed to be identical. These data suggest that the trehalose levels examined before and after heat shock of exponentially growing cells are not closely correlated with the stabilities of whole cells and/or critical targets in both yeast strains.

Alcohol Fermentation at High Temperature and the Strain-specific Characteristics Required to Endow the Thermotolerance of Sacchromyces cerevisiae KNU5377

  • Paik, Sang-Kyoo;Park, In-Su;Kim, Il-Sup;Kang, Kyung-Hee;Yu, Choon-Bal;Rhee, In-Koo;Jin, In-Gnyol
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2005.06a
    • /
    • pp.154-164
    • /
    • 2005
  • Saccharomyces cerevisiae KNU5377 is a thermotolerant strain, which can ferment ethanol from wasted papers and starch at 40$^{\circ}C$ with the almost same rate as at 30$^{\circ}C$. This strain showed alcohol fermentation ability to convert wasted papers 200 g (w/v) to ethanol 8.4% (v/v) at 40$^{\circ}C$, meaning that 8.4% ethanol is acceptable enough to ferment in the industrial economy. As well, all kinds of starch that are using in the industry were converted into ethanol at 40$^{\circ}C$ with the almost same rate as at 30$^{\circ}C$. Hyperthermic cell killing kinetics and differential scanning calorimetry (DSC) revealed that exponentially growing cells of this yeast strain KNU5377 were more thermotolerant than those of S. cerevisiae ATCC24858 used as a control. This intrinsic thermotolernace did not result from the stability of entire cellular components but possibly from that of a particular target. Heat shock induced similar results in whole cell DSC profiles of both strains and the accumulation of trehalose in the cells of both strains, but the trehalose contents in the strain KNU5377 were 2.6 fold higher than that in the control strain. On the contrary to the trehalose level, the neutral trehalase activity in the KNU5377 cells was not changed after the heat shock. This result made a conclusion that though the trehalose may stabilize cellular components, the surplus of trehalose in KNU5377 strain was not essential for stabilization of whole cellular components. A constitutively thermotolerant yeast, S. cerevisiae KNU5377, was compared with a relatively thermosensitive control, S. cerevisiae ATCC24858, by assaying the fluidity and proton ATPase on the plasma membrane. Anisotropic values (r) of both strains were slightly increased by elevating the incubation temperatures from 25$^{\circ}C$ to 37$^{\circ}C$ when they were aerobically cultured for 12 hours in the YPD media, implying the membrane fluidity was decreased. While the temperature was elevated up to 40$^{\circ}C$, the fluidity was not changed in the KNU5377 cell, but rather increased in the control. This result implies that the plasma membrane of the KNU5377 cell can be characterized into the more stabilized state than control. Besides, heat shock decreased the fluidity in the control strain, but not in the KNU5377 strain. This means also there's a stabilization of the plasma membrane in the KNU5377 cell. Furthermore, the proton ATPase assay indicated the KNU5377 cell kept a relatively more stabilized glucose metabolism at high temperature than the control cell. Therefore, the results were concluded that the stabilization of plasma membrane and growth at high temperature for the KNU5377 cell. Genome wide transcription analysis showed that the heat shock responses were very complex and combinatory in the KNU5377 cell. Induced by the heat shock, a number of genes were related with the ubiquitin mediated proteolysis, metallothionein (prevent ROS production from copper), hsp27 (88-fold induced remarkably, preventing the protein aggregation and denaturation), oxidative stress response (to remove the hydrogen peroxide), and etc.

  • PDF