• Title/Summary/Keyword: neutron diffraction

Search Result 123, Processing Time 0.029 seconds

Crystal Structure Analysis of $LiN(D_xH_{1-x}){_4}SO_4$ by X-ray and Neutron Diffraction (X-선과 중성자 회절을 이용한 강유전체 단결정 $LiN(D_xH_{1-x}){_4}SO_4$의 결정구조 연구)

  • Kim, Shin-Ae;Kim, Seong-Hoon;So, Ji-Yong;Lee, Jeong-Soo;Lee, Chana-Hee
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.351-356
    • /
    • 2007
  • The crystal structure of $Li(ND_4)SO_4$ was analyzed by X-ray and neutron diffraction methods. The crystal is a deuterated $Li(NH_4)SO_4$ and one of the ferroelectric materials with hydrogen atoms. The crystal is orthorhombic at room temperature, $P2_1nb$, with lattice parameters of $a=5.2773(5)\;{\AA},\;b=9.1244(23)\;{\AA},\;c=8.7719(11)\;{\AA}$ and Z=4. Neutron intensity data were collected on the Four-Circle diffractometer (FCD) at HANARO in Korea Atomic Energy Research Institute and X-ray date were given by Prof. Y. Noda of Tohoku University Japan. The structure was refined by full-matrix least-square to final R value of 0.070 for 1450 observed reflections by X-ray diffraction and to final R=0.049 for 745 observed reflections by neutron diffraction. With X-ray data we obtained only one hydrogen atomic position. However, not only all atomic positions of four hydrogen atoms at $NH_4$ but also the occupation factors of D and H were refined with neutron data. From this results we obtained the average chemical structure of this sample, $LiND_{3.05}H_{0.95}SO_4$.

A Study on the Condition of Single Crystal Neutron Experiment

  • Lee, Yun-Peel
    • Nuclear Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.31-34
    • /
    • 1972
  • The reciprocal space method of increasing the signal to background ratio in X-ray diffraction work with single crystal is extended to the case of equatorial neutron diffraction works. The formulae of optimum width of the detectors with If e various experimental methods are derived.

  • PDF

Characterization of residual stress distribution of thick steel weld by contour method (굴곡측정법을 이용한 극후판 용접부 잔류응력분포 정량분석)

  • Kim, Dong-Kyu;Woo, Wanchuck;Kang, Youn-Hee
    • Journal of Welding and Joining
    • /
    • v.33 no.1
    • /
    • pp.24-29
    • /
    • 2015
  • Residual stresses arising from the materials processing such as welding and joining affect significantly the structural integrity depending on the external loading condition. The quantitative measurement of the residual stresses is of great importance in order to characterize the effects of the residual stresses on the structural safety. In this paper, we introduce a newly devised destructive technique, the contour method (CM), which is applied for the measurements of the residual stress distributions through the thickness of a 80 mm thick steel weld. Residual stresses are evaluated from the contour, which is the normal displacement on a cut surface produced by the relaxation of residual stresses, using a finite element model. The CM provides a two-dimensional map of the residual stresses normal to the cut surface. The CM developed in the present study was validated in comparison with the residual stress distribution determined by a well-established neutron-diffraction residual stress instrument (RSI) instrumented in HANARO neutron research reactor.

Mechanical alloying effect and structural observation of (V, Fe)-N amorphous alloy powders (기계적 합금화에 의한 (V, Fe)-N계 비정질 합금의 제조 및 구조변화)

  • 이충효;전성용;김지순
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.4
    • /
    • pp.129-134
    • /
    • 2004
  • In this study, we investigated the effect of a nitrogen atom on the amorphization of V-Fe alloy through solid-gas reaction during mechanical alloying (MA). MA by planetary ball mill of $V_{70}Fe_{30}$ elemental powders was carried out under the nitrogen gas atmosphere. Amorphization has been observed after 160 hours of ball milling in this case. The DSC spectrum for the mechanically alloyed ($V_{70}Fe$_{30}$)_{0.89}N_{0.11}$ powders exhibits a sharp exothermic peak due to crystallization at about $600^{\circ}C$. Structural transformation from the bcc crystalline to amorphous states was also observed through X-ray and neutron diffractions. We take a full advantage of a negligibly small scattering length of the V atom in the neutron diffraction measurement. During amorphization process the octahedral unit, which is typical of a polyhedron formed in any crystal structures, was preferentially destroyed and transformed into the tetrahedral unit. Futhermore, neutron diffraction measurements revealed that a nitrogen atom is selectively situated at a center of the polyhedron formed by V atoms.

A Combined Rietveld Refinement on the Crystal Structure of a Magnetoelectric Aurivillius Phase $Bi_5Ti_3FeO_{15}$ Using Neutron and X-ray Powder Diffractions

  • Ko, Tae-Gyung;Jun, Chang-Ho;Lee, Jeong-Soo
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.341-347
    • /
    • 1999
  • An ambiguity on the correct room temperature structure of $Bi_5Ti_3FeO_{15}$ was resolved using a combined Rietveld refinement of neutron and X-ray diffraction. The structure of this compound has been reported to have a space group of F2mm (adopting 2-fold rotation symmetry along the c-axis) or A21am. However, our diffraction, study reveals that some reflections would violate F-centering and confirm that the belong to $A2_1$am. Out refinement with the space group of $A2_1$am converged at $R_p=6.85%, R_wp=9.23%$ and $\chi^2$=1.66 for an isotropic temperature model with 85 variables. The lattice constants are a=5.4677(1) $\AA$, b=5.4396(1) $\AA$, and c=41.2475(8)$\AA$. In structure, Ti/Fe atoms at the oxygen octahedral sites of the perovskite unit are completely disordered, resulting in that these atoms are transparent in neutron diffraction. The octahedra of the perovskite unit are relatively displaced along the a-axis against the Bi atoms, which contribute as a major component to the spontaneous polarization of $Bi_5Ti_3FeO_{15}$.

  • PDF

Structural and component characterization of the B4C neutron conversion layer deposited by magnetron sputtering

  • Jingtao Zhu;Yang Liu;Jianrong Zhou;Zehua Yang;Hangyu Zhu;Xiaojuan Zhou;Jinhao Tan;Mingqi Cui;Zhijia Sun
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3121-3125
    • /
    • 2023
  • Neutron conversion detectors that use 10B-enriched boron carbide are feasible alternatives to 3He-based detectors. We prepared boron carbide films at micron-scale thickness using direct-current magnetron sputtering. The structural characteristics of natural B4C films, including density, roughness, crystallization, and purity, were analyzed using grazing incidence X-ray reflectivity, X-ray diffraction, X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and scanning electron microscopy. A beam profile test was conducted to verify the practicality of the 10B-enriched B4C neutron conversion layer. A clear profile indicated the high quality of the neutron conversion of the boron carbide layer.

Effect of Strain Path on Lattice Strain Evolution during Monotonic and Cyclic Tension of Magnesium Alloy

  • Yoon, Cheol;Gharghouri, Michael A.;Lee, Soo Yeol
    • Korean Journal of Materials Research
    • /
    • v.25 no.5
    • /
    • pp.221-225
    • /
    • 2015
  • In-situ neutron diffraction has been employed to examine the effect of strain path on lattice strain evolution during monotonic and cyclic tension in an extruded Mg-8.5wt.%Al alloy. In the cyclic tension test, the maximum applied stress increased with cycle number. Lattice strain data were acquired for three grain orientations, characterized by the plane normal to the stress axis. The lattice strain in the hard {10.0} orientation, which is unfavorably oriented for both basal slip and {10.2} extension twinning, evolved linearly throughout both tests during loading and unloading. The {00.2} orientation exhibited significant relaxation associated with {10.2} extension twinning. Coupled with a linear lattice strain unloading behavior, this relaxation led to increasingly compressive residual strains in the {00.2} orientation with increasing cycle number. The {10.1} orientation is favorably oriented for basal slip, and thus showed a soft grain behavior. Microyielding occurred in the monotonic tension test and in all cycles of the cyclic test at an applied stress of ~50 MPa, indicating that strain hardening in this orientation was not completely stable from one cycle to the next. The lattice strain unloading behavior was linear in the {10.1} orientation, leading to a compressive residual strain after every cycle, which, however, did not increase systematically from one cycle to the next as in the {00.2} orientation.