• Title/Summary/Keyword: nitrogenous compounds

Search Result 111, Processing Time 0.021 seconds

Review on the Analytical Methods and Ambient Concentrations of Organic Nitrogenous Compounds in the Atmosphere (대기 유기질소화합물의 분석방법 및 농도)

  • Choi, Na Rae;Kim, Yong Pyo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.1
    • /
    • pp.120-143
    • /
    • 2018
  • The analytical methods and their ambient levels of organic nitrogenous compounds such as nitrosamines, nitramines (nitroamines), imines, amides and nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) in the atmosphere are summarized and discussed. Sampling for the analysis of organic nitrogenous compounds was mostly conducted using high volume air sampler. The direct liquid extraction (DLE) using sonification and the pressurized liquid extraction (PLE) using the accelerated solvent extraction (ASE) have been frequently employed for the extraction of organic nitrogenous compounds in the atmospheric samples. After extraction, clean-up via filtration and the solid phase extraction (SPE) and concentrations using nitrogen and rotary evaporator have been generally conducted but in some studies the clean-up and concentration steps have been omitted to prevent the loss of analyte and improve the recovery rate of the analytical procedure. Instrumental analysis was mainly carried out using gas chromatography (GC) or the high performance liquid chromatography (HPLC) coupled with the single quadrupole mass spectrometer or tandem mass spectrometer in the electron ionization (EI), positive chemical ionization (PCI) and negative chemical ionization (NCI) mode and analysis sensitivity of nitrosamines and nitramines were higher in NCI mode. Desirable sampling and analysis methods for analyzing particulate organic nitrogenous compounds are suggested.

Removing nitrogenous compounds from landfill leachate using electrochemical techniques

  • Nanayakkara, Nadeeshani;Koralage, Asanga;Meegoda, Charuka;Kariyawasam, Supun
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.339-346
    • /
    • 2019
  • In this research, applicability of electrochemical technology in removing nitrogenous compounds from solid waste landfill leachate was examined. Novel cathode material was developed at laboratory by introducing a Cu layer on Al substrate (Cu/Al). Al and mild steel (MS) anodes were investigated for the efficiency in removing nitrogenous compounds from actual leachate samples collected from two open dump sites. Al anode showed better performances due to the effect of better electrocoagulation at Al surface compared to that at MS anode surface. Efficiency studies were carried out at a current density of $20mA/cm^2$ and at reaction duration of 6 h. Efficiency of removing nitrate-N using Al anode and developed Cu/Al cathode was around 90%. However, for raw leachate, total nitrogen (TN) removal efficiency was only around 30%. This is due to low ammonium-N removal as a result of low oxidation ability of Al. In addition to the removal of nitrogenous compounds, reactor showed about 30% removal of total organic carbon. Subsequently, raw leachate was diluted four times, to simulate pre-treated leachate. The diluted leachate was treated and around 88% removal of TN was achieved. Therefore, it can be said that the reactor would be good as a secondary or tertiary treatment step in a leachate treatment plant.

Peroxidase Activity Boosting by Various Nitrogenous Compounds

  • Lee, Dong-Joo;Kim, Soung-Soo;Lee, Mi-Young
    • BMB Reports
    • /
    • v.33 no.4
    • /
    • pp.312-316
    • /
    • 2000
  • Effects of various nitrogenous compounds on the peroxidative activity of Korean radish (Rophanus sativus L.) isoperoxidase $A_1$ were examined by using anilino substrates, such as dianisidine and phenylenediamine. We also used phenolic substrates such as guaiacol, chlorogenic acid, caffeic acid, ferulic acid and esculetin. The peroxidation of dianisidine was stimulated by adenine and imidazole as much as 5 fold and 11 fold, respectively at pH 8. Moreover, about 4.8 fold and 8 fold stimulation of phenylenediamine peroxidation occurred by adenine and imidazole, respectively at pH 8. The stimulation by adenine and imidazole did not occur at the acidic pH range. The peroxidations of phenolic substrates, such as guaiacol, chlorogenic acid, caffeic acid, ferulic acid and esculetin, were not boosted greatly by any of the nitrogenous compounds tested. Notably, ammonium salt, which has been known for the excellent booster of horseradish peroxidase, did not affect the peroxidation of the Korean radish isoperoxidase $A_1$. The kinetic studies of dianisidine peroxidation with imidazole, as a model of boosting reaction, showed that neither the affinity of imidazole against dianisidine, nor the activation energy of dianisidine peroxidation changed during the activity boosting of isoperoxidase $A_1$.

  • PDF

Volatile compounds and some physico-chemical properties of pastırma produced with different nitrate levels

  • Akkose, Ahmet;Unal, Nazen;Yalinkilic, Baris;Kaban, Guzin;Kaya, Mukerrem
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.8
    • /
    • pp.1168-1174
    • /
    • 2017
  • Objective: The aim of the study was to evaluate the effects of different nitrate levels (150, 300, 450, and 600 ppm $KNO_3$) on the volatile compounds and some other properties of pastırma. Methods: Pastırma samples were produced under the controlled condition and analyses of volatile compounds, and thiobarbituric acid reactive substances (TBARS) as an indicator of lipid oxidation, non-protein nitrogenous matter content as an indicator of proteolysis, color and residual nitrite were carried out on the final product. The profile of volatile compounds of pastırma samples was analyzed by gas chromatography/mass spectrometry using a solid phase microextraction. Results: Nitrate level had a significant effect on pH value (p<0.05) and a very significant effect on TBARS value (p<0.01). No significant differences were determined in terms of $a_w$ value, non-protein nitrogenous substance content, color and residual nitrite between pastırma groups produced by using different nitrate levels. Nitrate level had a significant (p<0.05) or a very significant (p<0.01) effect on some volatile compounds. It was determined that the amounts and counts of volatile compounds were lower in the 450 and especially 600 ppm nitrate levels than 150 and 300 ppm nitrate levels (p<0.05). While the use of 600 ppm nitrate did not cause an increase in residual nitrite levels, the use of 150 ppm nitrate did not negatively affect the color of pastırma. However, the levels of volatile compounds decreased with an increasing level of nitrate. Conclusion: The use of 600 ppm nitrate is not a risk in terms of residual nitrite in pastırma produced under controlled condition, however, this level is not suitable due to decrease in the amount of volatile compounds.

Studies on Cheese Ripening Part V. Degradation of Nitrogenous Compounds During the Ripening of Gouda-type Cheese (치이즈 숙성(熟成)에 관(關)한 연구(硏究) 제5보(第5報) Gouda-type 치이즈의 질소화합물(窒素化合物)의 변화(變化))

  • Kim, Yong-Kyo;Kim, Jong-Shik
    • Korean Journal of Food Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.107-112
    • /
    • 1976
  • This experiment has been carried out to study the changes of caseins is Gouda-type cheese during ripening by the use of DEAE-cellulose column and polyacrylamide gel electrophoresis. The results obtained were as follow: 1. The amount of water soluble nitrogenous compounds in the cheese ripened for 2 and 4 months was 19.03% and 30.61% for total nitrogen in the cheese, respectively. On the other hand, the amount of 5% NaCl soluble nitrogenous compounds in the cheese increased to 41.13% for 2 months ripening, but it decreased to 22.61% at 4th month. 2. By DEAE-cellulose column, various nitrogenous compounds of Gouda-type cheese were fractionated into 5 major and several minor peaks. The proportion of some fraction areas to the whole increased with the ripening period and the others decreased. 3. Electrophoretic patterns of various nitrogenous compounds in a 4-month-old cheese showed 5 and 8 bands, repectively. 4. Sixteen amino acids were identified in soluble and precipitable compounds at 12% TCA in a 4-month-old cheese.

  • PDF

Compositions of Extractive Nitrogenous Constituents and Their Monthly Variation for Fresh Capsosiphon fulvescens

  • Jung, Kyoo-Jin;Park, Jung-Nim
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.2
    • /
    • pp.120-129
    • /
    • 2010
  • To elucidate the composition of extractive nitrogenous components in the fresh Capsosiphons fulvescens cultured off the southern coast of Korea, and to determine the monthly variation of these nitrogenous components, extract samples collected monthly from December to March at Jangheung-gun, Jeonnam Province were analyzed for total nitrogen, free and combined amino acids, ATP and related compounds, betaines, trimethylamine oxide (TMAO) and trimethylamine (TMA). The content of extractive nitrogen was 1,090~1,233 mg/100 g on dry basis. The number of 21~25 ninhydrin-positive substances was detected in the analysis of free amino acids, and their total amount was 3,710~4,788 mg/100 g on dry basis. Among them, free proline, asparagine, glutamic acid, alanine, taurine and glutamine were found to be abundant. The combined amino acids amounted to 1,573~2,121 mg/100 g in total and the total amount of ATP and related compound was 33.8~84.0 mg/100 g ($1.06{\sim}2.46\;{\mu}mol/g$) on dry basis. Betaine, glycinebetaine, $\beta$-alaninebetaine, $\gamma$-butyrobetaine, homarine and trigonelline were detected in most of samples. Levels of free and combined amino acids, ATP and related compounds fluctuated from sample to sample, with their contents higher in December and January and lower in March.

Simultaneous degradation of nitrogenous heterocyclic compounds by catalytic wet-peroxidation process using box-behnken design

  • Gosu, Vijayalakshmi;Arora, Shivali;Subbaramaiah, Verraboina
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.488-497
    • /
    • 2020
  • The present study investigates the feasibility of nitrogenous heterocyclic compounds (NHCs) (Pyridine-Quinoline) degradation by catalytic wet peroxidation (CWPO) in the presence of nanoscale zerovalent iron supported on granular activated carbon (nFe0/GAC) using statistical optimization technique. Response surface methodology (RSM) in combination with Box-Behnken design (BBD) was used to optimize the process parameters of CWPO process such as initial pH, catalyst dose, hydrogen peroxide dose, initial concentration of pyridine (Py) and quinolone (Qn) were chosen as the main variables, and total organic carbon (TOC) removal and total Fe leaching were selected as the investigated response. The optimization of process parameters by desirability function showed the ~85% of TOC removal with process condition of initial solution pH 3.5, catalyst dose of 0.55 g/L, hydrogen peroxide concentration of 0.34 mmol, initial concentration of Py 200 mg/L and initial concentration of Qn 200 mg/L. Further, for TOC removal the analysis of variance results of the RSM revealed that all parameter i.e. initial pH, catalyst dose, hydrogen peroxide dose, initial concentration of Py and initial concentration of Qn were highly significant according to the p values (p < 0.05). The quadratic model was found to be the best fit for experimental data. The present study revealed that BBD was reliable and effective for the determination of the optimum conditions for CWPO of NHCs (Py-Qn).

Nutrient Components in the Siphon of the Surf Clam Tresus keenae

  • Choi, Jong-Hwa;Shin, Tai-Sun;Ahn, Chang-Bum
    • Fisheries and Aquatic Sciences
    • /
    • v.8 no.2
    • /
    • pp.43-50
    • /
    • 2005
  • We evaluated the nutritional composition of the siphon of the surf clam Tresus keenae in regard to the presence of nitrogenous [amino acids, nucleotides and their related compounds, total creatinine, betaine, trimethylamine oxide (TMAO), and trimethylamine (TMA)] and non­nitrogenous compounds (sugars and organic acids), lipid fatty-acid composition, and occurrence of minerals. The content of total free amino acids was 660.27 $\pm$ 7.94 mg/100 g, and the predominant amino acids were arginine, alanine, sarcosine, glycine, and glutamic acid. These amino acids accounted for $71\;\%$ of the total free amino acids. Among the nucleotides and their related compounds, inosine was the major component and comprised 40.38 $\pm$ 0.02 mg/100 g. Free amino acids were the largest contributor to total extracted nitrogen, comprising $49.94\%$, followed by total creatinine, betaine, nucleotides, and ammonia; the contribution of TMAO and TMA was small. For the non-nitrogenous compounds, malic acid, propionic acid, and succinic acid comprised the major portion of the ten kinds of organic acids detected, and the sugars found were glucose, maltose, and arabinose, which were estimated to be $147.0\pm7.15,\;34.45\pm1.09,\;and\;1.21\pm0.02\;mg/100\;g,$ respectively. The predominant minerals were Na and K, which comprised $11.43\pm1.06\;and\;9.46\pm1.02\;mg/100\;g,$ respectively. The major fatty acids were C22:6, C20:5, C23:0, C18:3, and C16:0 in the lipid fractions. The 23:0 level of glycolipid (GL) was the highest of any other lipid fraction. The amount of total polyunsaturated fatty acids (PUFA) in the lipid fractions was higher, ranging from $58.22\%\;in\;GL\;to\;77.1\%$ in phospholipid (PL), compared to the saturated and monounsaturated fatty acids. Of the n-3 fatty acids, C20:5 and C22:6 contributed $35.30-64.44\%$ of PUFA in the lipid fractions. The ratios of n-3 to n-6 PUFA in total lipid (TL), neutral lipid (NL), PL, and GL were 4.35, 4.26, 6.69, and 2.04, respectively.

Glutamine Synthetase of some Fermentation Bacteria: Function and Application

  • Tachiki, Takashi
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1986.12a
    • /
    • pp.506-508
    • /
    • 1986
  • Metabolic activity of inorganic nitrogenous compounds affects not only microbial growth but also metabolite production in fermentation technology. We have worked on the enzymes participating in ammonia assimulation of some fermentation bacteria. This paper summarizes the results on glutamine synthetase and its application in practical field. Glutamine synthetase (L-glutamate:ammonia ligase, EC. 6.3.1.2) catalyzes the formation of glutamine from glutamate and ammonia at the expense of cleavage of ATP and inorganic phosphate. The enzyme plays a dual role in nitrogen metabolism in bacteria; it is a key enzyme not only in the biosynthesis of various compounds through glutamine but also in the regulation of synthesis of some enzymes involved in the metabolism of nitrogenous compounds. The detailed works with the Eschericia coli and other enterobacterial enzymes revealed that glutamine synthetase is controlled by the following complex of mechanisms: (a) feedback inhibition by end products, (b) repression and derepression of enzyme synthesis, (c) modulation of enzyme activity in response to divalent cation and (d) covalent modification of enzyme protein by adenylylation and its cascade control. Comparative studies have also been made on the enzymes from other organisms.

  • PDF

Comparison of Extractive Nitrogenous Constituents between the Diploid and the Triploid of Oyster Crassostrea gigas Whole Body

  • Park Choon-Kyu
    • Fisheries and Aquatic Sciences
    • /
    • v.2 no.2
    • /
    • pp.135-141
    • /
    • 1999
  • In order to investigate the composition of extractive nitrogenous components in the diploid and the triploid oysters, Crassostrea gigas, cultured at the south coast of Korea, the whole edible part (whole body) was analyzed into extractive nitrogen, free amino acids, oligopeptides, ATP and its related compounds, quaternary ammonium bases, and guanidino compounds using specimens collected from April to May of 1992. The major free amino acids in the diploid and the triploid were taurine, proline, alanine, glycine, glutamic acid hypotaurine, glutamine, arginine, aspartic acid, and $\beta-alanine$. There was no conspicuous difference in the constituents of free amino acids between the diploid and the triploid. A lot of hypotaurine was detected in the diploid and the triploid of oyster and the contents of them were 107 mg and 123 mg/100g, respectively. The compounds, glycinebetaine, homarine and trigonelline were found in both the diploid and the triploid. Among them, glycinebetaine was the most prominent in all the samples. The amount of protein, glycogen, extractive nitrogen, oligopeptides, ATP and its related compounds, and free amino acids in the triploid was higher than that of the diploid (p<0.10)

  • PDF