• 제목/요약/키워드: nitrosation

검색결과 33건 처리시간 0.026초

Capsaicin 및 그 대사산물에 의한 in vitro에서의 니트로소 화합물 생성 저해효과 (Inhibition of in vitro Nitrosation by Capsaicin and Its Metabolites)

  • 유리나;박정순;박건영
    • 한국식품영양과학회지
    • /
    • 제27권5호
    • /
    • pp.1015-1018
    • /
    • 1998
  • Capsaicin(8-methyl-N-vanillyl-6-nonenamide: CAP) known well as a major compound of not taste in hot pepper, was investigated for the inhibition effect on in vitro nitrosation. CAP(100$\mu$mol) inhibited the formation of N-nitrosoproline(NPRO) and N-nitrosothioproline(NTPRO) by 56% and 26%, respectively. Vanillyl alcohol inhibited the nitrosation of proline by a concentration-dependent manner, and vanillic acid and vanillin were less effective in blocking the nitrosation of proline compared to CAP and anillyl alcohol. The inhibitory effect of NPRO formation by CAP was evaluated to similar with alpha-tocopherol, and vanillyl alcohol was more effective than alpha-tocopherol in blocking the nitrosation of proline. Our results suggested that CAP and its metabolites such as vanillyl alcohol could inhibit endogenous nitrosation in hydrophobic biological environment.

  • PDF

Determination of Total Phenols in Environmental Waters by Capillary-HPLC with U.S.E.P.A. Classified Eleven Priority Pollutant Phenols after Nitrosation and Their Visible Spectrophotometric Detection

  • Chung, Yong-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권2호
    • /
    • pp.297-302
    • /
    • 2005
  • The determination of total phenols was accomplished by capillary-high performance liquid chromatography (capillary-HPLC) after nitrosation of the U.S.E.P.A. classified 11 priority pollutant phenols, using the nitrosated parent phenol (POHNO) as a reference for calibration. The optimum mobile phase composition for this analysis was found by examining the effect of changing the percentage of acetonitrile (MeCN) in the mobile phase on retention factors (k values) and peak intensities. As MeCN percentage was increased, k values were reduced and peak intensities were generally increased. From the results obtained, it was found that the optimum mobile phase was 90%(v/v) MeCN solution at pH 8.0, the detection wavelength of 400 nm, and a detection limit (D.L., concentration at signal to noise ratio (S/N) of 3.0) of 4.5 ${\times}$ $10^{-7}$ M. In addition, 10 of the 11 phenols present in mineral or waste water were separated after the nitrosation by capillary-HPLC. The optimum mobile phase for separation was a 40%(v/v) MeCN solution at pH 5.0.

흰쥐 대뇌피질 신경세포에 미치는 호모시스틴의 신경독성에 대한 S-nitrosation의 역할 (S-nitrosation Ameliorates Homocysteine-mediated Neurotoxicity in Primary Culture of Bat Cortical Neurons)

  • 김원기
    • 대한약리학회지
    • /
    • 제32권2호
    • /
    • pp.169-175
    • /
    • 1996
  • The reactivity of the sulfhydryl (thiol) group of homocysteine has been associated with an Increased risk of atherosclerosis, thrombosis and stroke. Thiols also react with nitric oxide (NO, an endothelium-derived relaxing factor (EDRF) ), forming S-nitrosothiols that have been reported to have potent vasodilatory and antiplatelet effects and been expected to decrease adverse vascular effects of homocysteine. The present study was aimed to Investigate whether the S-nitrosation of homocysteine modulates the neurotoxic effects of homocysteine. An 18 hour-exposure of cultured rat cortical neurons to homocysteine ( >1 mM) resulted in a significant neuronal cell death. At comparable concentrations ( <10 mM), however, S-nitrosohomocysteine did not induce neuronal cell death. Furthermore, S-nitrosohomocysteirle partially blocked NMDA-mediated neurotoxicity. S-nitrosohomocysteine also decreased NMDA-mediated increases in intracellular calcium concentration. The present data indicate that in brain nitric oxide produced from neuronal and nonneuronal cells can modulate the potential, adverse properties of homocysteine.

  • PDF

Effects of Added Anions on the Reaction of Nitrous Acid with Hydrogen Peroxide

  • Park, Jong-Yoon;Choi, Eun-Jin;Park, Joon-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제13권1호
    • /
    • pp.37-41
    • /
    • 1992
  • The reactions of nitrous acid with hydrogen peroxide in acidic aqueous solution in the presence of several added anions have been studied at $0^{\circ}C$ and pH 2-4 to investigate the nucleophilic catalysis of these anions. From the dependence of reaction rates on the anion concentrations, significant catalytic effects were found for $Cl^-,\;Br^-,\;SCN^-$, in order of effect $SCN^-\;{\approx}\;Br^->Cl^-$, while no observable effect was found for ${ClO_4}^-$ and ${NO_3}^-$. These results support O-nitrosation reaction is the rate-determining step and NOX formed in the presence of an anion ($X^-$) also acts as a nitrosating agent and accelerates the overall reaction rate. The order of reactivity was found to be NOCl>NOBr>NOSCN, which is consistent with the results of N-nitrosation and S-nitrosation reactions.

식품중의 아질산염과 N-Nitrosamine에 관한 고찰 (Nitrite and Nitrosamine in food)

  • 우순자
    • 대한가정학회지
    • /
    • 제23권3호
    • /
    • pp.85-101
    • /
    • 1985
  • 1. Nitrate and nitrite may contribute via nitrosation to the human exposure to N-nitroso compounds, especially nitrosamines, which are suspectd to be human carcinogens. 2. Since certain foods contain traces of nitrosamines, one should take the several points into consideration in evaluating the risk. 3. Nitrites, which can appear in the because of natural occurrence or deliberate addition, can react under the acidic conditions of the normal stomach with secondary amines to form nitrosamine. 4. Among the foods esamined, nitrate-nitrite treated meat products cooked bacon, and salted and dried fish are the main contributors of nitrosamines in our diet. 5. Consequently, in order to minimize human exposure to these chemicals, it is obviously essential to develop the alternative sources of nitrite in cured meat products. Thus the emphasis should be placed upon the most effective use of nitrite in curing with the use of acceptable inhibitors of nitrosation such as ascorbc acid or $\alpha$-tocopherol.

  • PDF

Preparation of N'-Substituted Anilino-N-Methyl-N-Nitorsoureas as Candidate Antitumor Agents

  • Kim, Jack-C;Kim, Yeon-Gweon;Min, Byoung-Tack;Park, Jin-Il
    • Archives of Pharmacal Research
    • /
    • 제17권6호
    • /
    • pp.420-423
    • /
    • 1994
  • Various N'-substituted anilino-N-methyl-N'-nitrosoureas(2a-n) were easily prepared from the reaction of substituted phenylhydraines $(3, 4-CH_3, {\;} 3-, {\;} 4-OCH_3, {\;} 3-, {\;} 4-F, {\;} 3, {\;} 4-Cl, {\;} 4-Br, {\;} 2-, {\;} 3-, {\;} 4-NO_2, 4-(NO_2)_2)$ with methyl isocyanate, followed by the nitrosation with 99% HCOOH and dry sodium lnitrite powder. Surprisingly, of these series of analogus, the anilino-nitrocosureas substituted with eletron-withdrawing nitro groups (2k-a) showed significantly low $ED_{30}$ values of $1.4-3.4 {\mu}g/ml.$ In addition, none of these copounds subtituted with electron-donating groups exhibited cytotoxicities.

  • PDF

미환경청 분류 11종 상위 환경오염 페놀들의 나이트로소화 (Nitrosation of U.S. E.P.A. Classified Eleven Priority Pollutant Phenols)

  • 정용순;이성훈;모토미즈 쇼지
    • 분석과학
    • /
    • 제17권5호
    • /
    • pp.393-400
    • /
    • 2004
  • 페놀 (POH) 용액에 염산과 아질산나트륨을 가하고 이 혼합물 용액의 온도를 상승시키면서 POH의 나이트로소화 반응의 최적조건을 발견하였다. 염산과 아질산나트륨 농도, 반응온도, 그리고 반응시간 변화가 나이트로소페놀 생성에 미치는 효과를 관찰함으로서 발견한 것이다. 결과, POH의 나이트로소화의 최적조건은 0.10 M 이상의 HCl 농도, $5.0{\times}10^{-4}{\sim}2.0{\times}10^{-3}M$ 범위의 $NO{_2}^-$ 농도, $80^{\circ}C$의 반응온도, 그리고 3시간의 반응시간이었다. POH 이외의 10종 미국환경청 분류 상위환경오염페놀들의 나이트로소화 반응도 이 조건에서 진행시켰다. 나이트로소화 반응을 받는 페놀은 POH, 2-클롤로페놀 (2ClPOH), 2,4-다이클롤로페놀 (24diClPOH), 2,4-다이메틸페놀(24diMPOH), 4-클롤로-3-메틸페놀 (4Cl3MPOH), 그리고 적은 양의 2-나이트로페놀 (2NPOH)이었다. 산성 용액에서 나이트로소화된 페놀이나 되지 않은 페놀 여러 종의 최대흡광파장(${\lambda}_{max}$)은 300 nm 부근이었고, 염기성 용액에서는 2,4,6-트리클롤로페놀 (246triClPOH)과 펜타클롤로페놀 (pentaClPOH)을 제외하고, 그 외 모든 페놀들의 ${\lambda}_{max}$는 400 nm부근이었다. 염기성 용액에서 나이트로소화된 POH 및 그 유도체들의 400 nm에서의 몰흡광계수 (${\varepsilon}$)는 이들의 산성 용액 300 nm에서의 ${\varepsilon}$보다 1.5~2.0배 정도였다. 모세관-고성능액체크로마토그래피 (Capillary-HPLC)의 크로마토그램에 의하여 반응용액 중 $NO{_2}^-$ 농도가 0.003 M 이상일 때는 과량의 $NO{_2}^-$가 나이트로소 페놀의 생성을 방해함도 발견하였다.

Formation of Nitrosamines from Sodium Nitroprusside and Physiological Amines

  • Park, Jeen-Woo
    • Archives of Pharmacal Research
    • /
    • 제12권4호
    • /
    • pp.239-242
    • /
    • 1989
  • Several physiological components containing a secondary amino group were capable of reacting sodium nitroprusside to form potentially carcinogenic nitrosamines under physiological conditions (pH 7.3, 37). In each case the products were identical to those produced upon reaction with nitrous acid at much lower pH values. Reaction rates measured with proline were shown to reflect a first order dependence on both amine and nitroprusside concentrations. The strong influences of pH on the reactions of sodium nitro prusside with amines were also observed. These results show sodium nitroprusside could be a very potent nitrosation agent under physiological conditions.

  • PDF