• Title/Summary/Keyword: node encoding

Search Result 44, Processing Time 0.032 seconds

Automatic Generation of 3-D Finite Element Meshes : Part(I) - Tetrahedron-Based Octree Encoding - (삼차원 유한요소의 자동생성 (1) - 사면체 옥트리의 구성 -)

  • 정융호;이건우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3159-3174
    • /
    • 1994
  • A simple octree encoding algorithm based on a tetrahedron root has been developed to be used for fully automatic generation of three dimensional finite element meshes. This algorithm starts octree decomposition from a tetrahedron root node instead of a hexahedron root node so that the terminal mode has the same topology as the final tetrahedral mesh. As a result, the terminal octant can be used as a tetrahedral finite element without transforming its topology. In this part(I) of the thesis, an efficient algorithm for the tetrahedron-based octree is proposed. For this development, the following problems have been solved, : (1) an efficient data structure for storing the octree and finite elements, (2) an encoding scheme of a tetrahedral octree, (3) a neighbor finding technique for the tetrahedron-based octree.

A Genetic Algorithm Based Source Encoding Scheme for Distinguishing Incoming Signals in Large-scale Space-invariant Optical Networks

  • Hongki Sung;Yoonkeon Moon;Lee, Hagyu
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.2
    • /
    • pp.151-157
    • /
    • 1998
  • Free-space optical interconnection networks can be classified into two types, space variant and space invariant, according to the degree of space variance. In terms of physical implementations, the degree of space variance can be interpreted as the degree of sharing beam steering optics among the nodes of a given network. This implies that all nodes in a totally space-invariant network can share a single beam steering optics to realize the given network topology, whereas, in a totally space variant network, each node requires a distinct beam steering optics. However, space invariant networks require mechanisms for distinguishing the origins of incoming signals detected at the node since several signals may arrive at the same time if the node degree of the network is greater than one. This paper presents a signal source encoding scheme for distinguishing incoming signals efficiently, in terms of the number of detectors at each node or the number of unique wavelengths. The proposed scheme is solved by developing a new parallel genetic algorithm called distributed asynchronous genetic algorithm (DAGA). Using the DAGA, we solved signal distinction schemes for various network sizes of several topologies such as hypercube, the mesh, and the de Brujin.

  • PDF

Encoding of XML Elements for Mining Association Rules

  • Hu Gongzhu;Liu Yan;Huang Qiong
    • The Journal of Information Systems
    • /
    • v.14 no.3
    • /
    • pp.37-47
    • /
    • 2005
  • Mining of association rules is to find associations among data items that appear together in some transactions or business activities. As of today, algorithms for association rule mining, as well as for other data mining tasks, are mostly applied to relational databases. As XML being adopted as the universal format for data storage and exchange, mining associations from XML data becomes an area of attention for researchers and developers. The challenge is that the semi-structured data format in XML is not directly suitable for traditional data mining algorithms and tools. In this paper we present an encoding method to encode XML tree-nodes. This method is used to store the XML data in Value Table and Transaction Table that can be easily accessed via indexing. The hierarchical relationship in the original XML tree structure is embedded in the encoding. We applied this method to association rules mining of XML data that may have missing data.

  • PDF

Design Methodology of LDPC Codes based on Partial Parallel Algorithm (부분병렬 알고리즘 기반의 LDPC 부호 구현 방안)

  • Jung, Ji-Won
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.4
    • /
    • pp.278-285
    • /
    • 2011
  • This paper makes an analysis of the encoding structure and the decoding algorithm proposed by the DVB-S2 specification. The methods of implementing the LDPC decoder are fully serial decoder, the partially parallel decoder and the fully parallel decoder. The partial parallel scheme is the efficient selection to achieve appropriate trade-offs between hardware complexity and decoding speed. Therefore, this paper proposed an efficient memory structure for check node update block, bit node update block, and LLR memory.

A Genetic-Based Optimization Model for Clustered Node Allocation System in a Distributed Environment (분산 환경에서 클러스터 노드 할당 시스템을 위한 유전자 기반 최적화 모델)

  • Park, Kyeong-mo
    • The KIPS Transactions:PartA
    • /
    • v.10A no.1
    • /
    • pp.15-24
    • /
    • 2003
  • In this paper, an optimization model for the clustered node allocation systems in the distributed computing environment is presented. In the presented model with a distributed file system framework, the dynamics of system behavior over times is carefully thought over the nodes and hence the functionality of the cluster monitor node to check the feasibility of the current set of clustered node allocation is given. The cluster monitor node of the node allocation system capable of distributing the parallel modules to clustered nodes provides a good allocation solution using Genetic Algorithms (GA). As a part of the experimental studies, the solution quality and computation time effects of varying GA experimental parameters, such as the encoding scheme, the genetic operators (crossover, mutations), the population size, and the number of node modules, and the comparative findings are presented.

A Differential Index Assignment Scheme for Tree-Structured Vector Quantization (나무구조 벡터양자화 기반의 차분 인덱스 할당기법)

  • 한종기;정인철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.2C
    • /
    • pp.100-109
    • /
    • 2003
  • A differential index assignment scheme is proposed for the image encoding system in which a variable-length tree-structured vector quantizer is adopted. Each source vector is quantized into a terminal node of VLTSVQ and each terminal node is represented as a unique binary vector. The proposed index assignment scheme utilizes the correlation between interblocks of the image to increase the compression ratio with the image quality maintained. Simulation results show that the proposed scheme achieves a much higher compression ratio than the conventional one does and that the amount of the bit rate reduction of the proposed scheme becomes large as the correlation of the image becomes large. The proposed encoding scheme can be effectively used to encode R images whose pixel values we, in general, highly correlated with those of the neighbor pixels.

A simple and efficient data loss recovery technique for SHM applications

  • Thadikemalla, Venkata Sainath Gupta;Gandhi, Abhay S.
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.35-42
    • /
    • 2017
  • Recently, compressive sensing based data loss recovery techniques have become popular for Structural Health Monitoring (SHM) applications. These techniques involve an encoding process which is onerous to sensor node because of random sensing matrices used in compressive sensing. In this paper, we are presenting a model where the sampled raw acceleration data is directly transmitted to base station/receiver without performing any type of encoding at transmitter. The received incomplete acceleration data after data losses can be reconstructed faithfully using compressive sensing based reconstruction techniques. An in-depth simulated analysis is presented on how random losses and continuous losses affects the reconstruction of acceleration signals (obtained from a real bridge). Along with performance analysis for different simulated data losses (from 10 to 50%), advantages of performing interleaving before transmission are also presented.

Low-Complexity Design of Quantizers for Distributed Systems

  • Kim, Yoon Hak
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.3
    • /
    • pp.142-147
    • /
    • 2018
  • We present a practical design algorithm for quantizers at nodes in distributed systems in which each local measurement is quantized without communication between nodes and transmitted to a fusion node that conducts estimation of the parameter of interest. The benefits of vector quantization (VQ) motivate us to incorporate the VQ strategy into our design and we propose a low-complexity design technique that seeks to assign vector codewords into sets such that each codeword in the sets should be closest to its associated local codeword. In doing so, we introduce new distance metrics to measure the distance between vector codewords and local ones and construct the sets of vector codewords at each node to minimize the average distance, resulting in an efficient and independent encoding of the vector codewords. Through extensive experiments, we show that the proposed algorithm can maintain comparable performance with a substantially reduced design complexity.

A Graph Embedding Technique for Weighted Graphs Based on LSTM Autoencoders

  • Seo, Minji;Lee, Ki Yong
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1407-1423
    • /
    • 2020
  • A graph is a data structure consisting of nodes and edges between these nodes. Graph embedding is to generate a low dimensional vector for a given graph that best represents the characteristics of the graph. Recently, there have been studies on graph embedding, especially using deep learning techniques. However, until now, most deep learning-based graph embedding techniques have focused on unweighted graphs. Therefore, in this paper, we propose a graph embedding technique for weighted graphs based on long short-term memory (LSTM) autoencoders. Given weighted graphs, we traverse each graph to extract node-weight sequences from the graph. Each node-weight sequence represents a path in the graph consisting of nodes and the weights between these nodes. We then train an LSTM autoencoder on the extracted node-weight sequences and encode each nodeweight sequence into a fixed-length vector using the trained LSTM autoencoder. Finally, for each graph, we collect the encoding vectors obtained from the graph and combine them to generate the final embedding vector for the graph. These embedding vectors can be used to classify weighted graphs or to search for similar weighted graphs. The experiments on synthetic and real datasets show that the proposed method is effective in measuring the similarity between weighted graphs.

Optimized Global Path Planning of a Mobile Robot Using uDEAS (uDEAS를 이용한 이동 로봇의 최적 전역 경로 계획)

  • Kim, Jo-Hwan;Kim, Man-Seok;Choi, Min-Koo;Kim, Jong-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.2
    • /
    • pp.268-275
    • /
    • 2011
  • This paper proposes two optimal path planning methods of a mobile robot using uDEAS (univariate Dynamic Encoding Algorithm for Searches). Before start of autonomous traveling, a self-controlled mobile robot must generate an optimal global path as soon as possible. To this end, numerical optimization method is applied to real time path generation of a mobile robot with an obstacle avoidance scheme and the basic path generation method based on the concept of knot and node points between start and goal points. The first improvement in the present work is to generate diagonal paths using three node points in the basic path. The second innovation is to make a smooth path plotted with the blending polynomial using uDEAS. Effectiveness of the proposed schemes are validated for several environments through simulation.