• 제목/요약/키워드: non-ballast steel plate girder railway bridge

검색결과 12건 처리시간 0.026초

강철도교에 대한 외부 후긴장 보강공법의 적용에 관한 실험 및 해석적 연구 (An Experimental and Analytical study on the Steel Plate Girder Railway bridge in the applying External Post-tensioning Method)

  • 박영훈;조선규;최정열;박용걸
    • 한국철도학회논문집
    • /
    • 제9권2호
    • /
    • pp.151-159
    • /
    • 2006
  • It analyzed the mechanical behaviors of non-ballasted railway bridge (steel plate girder type) with ballast reinforced on the finite element analysis, field test and laboratory test far the static and dynamic responses. The major objective of this study is to investigate the effects and application of reinforcement for steel plate girder railway bridge by the external post-tensioning method. The reinforcement of non-ballast railway bridge had obviously stable dynamic behaviors due to the additional dead force which was ballast. But in case of static behaviors, static displacements and stresses had increased nearly the allowable values. Therefore we analyzed the mechanical behaviors of non-ballasted railway bridge with ballast reinforced and external post-tensioning reinforced on the finite element analysis and laboratory test for the static and dynamic behavior. As a result, the reinforcement of ballasted railway bridge the external post-tensioning method are obviously effective for the additional dead force which is ballast. The analytical and experimental study are carried out to investigate the post-tension force decrease bending behavior and deflection in composite bridge for serviceability. The servicing railway bridge with ballast reinforced has need of the reasonable reinforcement measures which could be reducing the effect of additional dead load that degradation phenomenon of structure by an unusual. stresses and a drop durability.

방진제도시스템 적용에 따른 강철도 무도상 판형교의 거동 분석 (A Behavior Analysis of Railway Steel Plate Girder Bridge in the Applying Resilient Panel Track System)

  • 최정열;엄맥;강덕만;박용걸
    • 한국철도학회논문집
    • /
    • 제9권6호
    • /
    • pp.717-724
    • /
    • 2006
  • The major objective of this study is to investigate the effects and application of improvement for railway steel plate girder bridge by resilient panel track system. It analyzed the mechanical behaviors of steel plate girder bridge with applying resilient panel track system on the finite element analysis and laboratory test for static & dynamic characteristics. As a result, the improvement of steel plate girder bridge with resilient panel track systems are obviously effective for the static & dynamic response which is non-ballast steel plate girder bridge. The analytical and experimental study are carried out to investigate resilient panel track system decrease vertical acceleration and deflection on steel plate girder bridge for serviceability. And the resilient panel track system reduced dynamic maximum displacements (about 59%) and stresses (about 82%), the increase of dynamic safety is predicted by adopting resilient panel track system. From the dynamic test results of steel plate girder bridge, it is investigated that vertical acceleration and deflection is very low with applying resilient panel track system. The servicing steel plate girder bridge with resilient panel track system has need of the reasonable improvement measures which could be reducing the effect of static and dynamic behavior that degradation phenomenon of structure by an unusual response characteristic and a drop durability.

방진궤도시스템 적용에 따른 강철도 무도상 판형교의 거동 분석 (A Behavior Analysis of Railway Steel Plate Girder Bridge in the applying Resilient Panel Track system)

  • 이시용;엄맥;오수진;박용걸
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.437-446
    • /
    • 2006
  • The major objective of this study is to investigate the effects and application of improvement for railway steel plate girder bridge by resilient panel track system. It analyzed the mechanical behaviors of steel plate girder bridge with applying resilient panel track system on the finite element analysis and laboratory test for static & dynamic characteristics. As a result, the improvement of steel plate girder bridge with resilient panel track systems are obviously effective for the static & dynamic response which is non-ballast steel plate girder bridge. The analytical and experimental study are carried out to investigate resilient panel track system decrease vertical acceleration and deflection on steel plate girder bridge for serviceability. And the resilient panel track system reduced dynamic maximum displacements(about 59%) and stresses(about 82%), the increase of dynamic safety is predicted by adopting resilient panel track system. From the dynamic test results of steel plate girder bridge, it is investigated that vertical acceleration and deflection is very low with applying resilient panel track system. The servicing steel plate girder bridge with resilient panel track system has need of the reasonable improvement measures which could be reducing the effect of static and dynamic behavior that degradation phenomenon of structure by an unusual response characteristic and a drop durability.

  • PDF

주행조건에 따른 판형교 지점부 거동 측정 분석 (Measurement and Analysis about Behavior of Steel Plate Girder in Vicinity of Support, According to Driving Condition)

  • 이승열;김남홍;우병구;나강운
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.690-696
    • /
    • 2011
  • A number of conventional railway bridge is more than 2600. Non-ballast plate girder bridge is about 700 and this is 27% of all bridge numbers. Non-ballast plate girder has advantages that self load is more lighter than moving load and construction cost is more inexpensive than concrete bridge. But non-ballast plate girder has disadvantages that vibration and noise is bigger than concrete bridge. This study had analyzed behavior of non-ballast plate girder according to the arrangement of supports and driving conditions to review the proper arrangement of support. Measurements were performed in single line and disel locomotive of 7400type were used as test vehicle. The vehicle's driving conditions are as follows; Change of driving direction, Constant speed driving, Deceleration driving, Acceleration driving. Main measurement contents were horizontal displacement and vertical vibration acceleration in girder of vicinity support. Results of measurement are as follows; In case that a vehicle drives from fixed support to movable support, vertical vibration acceleration of the girder was smaller than opposition case.

  • PDF

강철도교에 대한 외부 후긴장 보강공법의 적용에 관한 연구 (A study on the Steel Plate Girder Railway bridge in the applying External Post-tensioning Method)

  • 최정열;박용걸;변종걸
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.1034-1039
    • /
    • 2004
  • The major objective of this study is to investigate the effects and application of reinforcement for steel plate girder railway bridge by the external prestressing method. It analyzed the mechanical behaviors of non-ballasted railway bridge with ballast reinforced and external post-tensioning reinforced on the finite clement analysis for the static and dynamic behavior. As a result, the reinforcement of ballasted railway bridge the external prestressing method are obviously effective for the additional dead force which is ballast. The analytical study are carried out to investigate the post-tension force decrease bending behavior and deflection in composite bridge for serviceability. To develop two type FEM model which reflect well the post-tension force transverse distribution behavior of servicing bridge. With the comparing the results of railway bridge with ballast which carried out before the post-tensioning with the results of railway bridge with ballast which carried out after post-tensioning, It is investigated that the additional dead load decrease effect and bending behavior of servicing bridge is effect by the post-tensioning. The reinforcement by using the external tendon can be reducing that structure of a degradation phenomenon by unusual stresses due to additional dead load and other problems.

  • PDF

무도상 판형교 레일 장대화에 따른 궤도 유지관리 비교연구 (A comparison study for the track maintenance system for the non-ballast steel plate bridge)

  • 남보현;장태철;우용근;민경주
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.401-410
    • /
    • 2007
  • Form the application of long rail system the non-ballast steel plate bridges, fatigue strength increase and rail noise reduction can be expected. This is mainly form the reduction of the rail impact at the rail joint locations which already made to behave together from welds. In the high speed rail, application of long rail system is essential because without long rail system, the required serviceability level can not be achieved. But even with this long rail systems, the thermal expansion from the girder can not be absorbed in the normal bearing systems, and these expansion cause between girder and rail. Also unexpected rail buckling and fracture through rail thermal tension may happen. It was found through numerical analysis and field measurement that these problems can be avoided by semi-fixed bearing system. In this study, the benefits of non-ballast plate bridge through long rail system, especially at the point of girder stability, girder stiffness increase and bearing maintenance will be reviewed.

  • PDF

PC-Slab 합성 철도판형교 유도상화 시험부설에 따른 성능 비교평가 (Capacity evaluation of PC-slab composite actions for the railway steel plate girder according to an experimental construction)

  • 민경주;이성욱;최형수;우용근
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.697-706
    • /
    • 2011
  • There are more than 800 railway steel plate girder bridges which are in use and the total length is approximately 50 km. Among these, it shall be pointed out that non-ballast rail systems which lay on wood sleepers are the most critical members. To strengthen this type of structures, mainly two methods have been applied. The first one is the most typical method which is to replace the girders with slab girder system or steel composite girders and to add ballast. It is not uncommon that the construction cost of substructure is more than ten time higher than that of superstructures and even in this case, the structural uncertainty for the substructures is not diminished. To resolve above mentioned problems, new method was developed to rehabilitate railway steel girder bridge by adding PC-slab using transport equipment. Using this method, substructure strengthen is rarely required because the additional weight to the bridge superstructure is only up to 1.0t/m. Also it was possible to save the construction cost by reducing construction duration and by simplifying the construction process. Experimental construction was performed for Jewon bridge and measurements were performed before and after construction to verify the bridge capacity.

  • PDF

레일매립궤도 시스템이 적용된 판형교의 진동 및 소음특성에 대한 연구 (Research on Vibration and Noise Characteristics of Steel Plate Girder Bridge with Embedded Rail Track System)

  • 박정근;고효인;강윤석;정영도;이성태
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권1호
    • /
    • pp.94-101
    • /
    • 2019
  • 기존 선로구조물의 대부분은 준공된 지 상당한 시일이 경과되어 노후화가 많이 진행된 상태이다. 특히 기존 철도교량 중 판형교는 상당수가 준공으로부터 40~60년 이상 경과된 노후교량이며 도상 없이 거더에 침목이 직결되어 있어서 차량의 주행하중이 교량에 직접 전달되므로 유도상 교량과 비교하여 교량에 가해지는 충격 및 소음이 클 뿐만 아니라 동적인 충격과 진동도 상대적으로 크다. 따라서 기존선 판형교에 대한 적절한 유지관리 및 보수, 보강기술의 개발이 매우 시급하다. 본 연구에서는 기존선 판형교의 성능개선과 소음, 진동 문제 해결을 위해 기개발된 레일매립궤도 시스템의 특징을 소개하고, 레일매립궤도의 진동 및 소음 저감 성능을 평가하기 위해 길이 5m 침목이 설치되어 있는 무도상 판형교와 레일매립궤도를 적용한 판형교를 제작하여 동일한 가진 조건에 따라 발생되는 진동응답을 측정하고 분석하였다. 또한 실험에서 얻은 진동응답 데이터를 음향해석 모델의 입력데이터로 사용하여 방사소음해석을 수행하였다. 실험 및 해석 결과 레일매립궤도를 적용한 판형교가 무도상 판형교 보다 진동에서는 15.0~18.8dB정도 감소하고 소음의 경우 평균 7.7dB(A)정도 감소하는 것으로 확인되었다.

외부 후 긴장된 무도상 철도 판형교 동적 거동 (Dynamic Behavior of External Post-tensioned Non-ballast Steel Plate Girder Railway Bridge)

  • 박용걸;박영훈;최동호
    • 대한토목학회논문집
    • /
    • 제28권3A호
    • /
    • pp.315-322
    • /
    • 2008
  • 본 연구에서는 외부 후 긴장 보강 공법을 공용중인 무도상 철도 판형교 보강 방안으로서 적용 할 경우 긴장재 강성 및 도입 긴장력의 크기가 동적 거동 특성 변화에 미치는 영향을 실험 및 해석적으로 평가 하였다. 연구 결과 긴장재 강성에 의해 고유 진동수가 증가하나 긴장력 크기 증가에 의한 고유 진동수 감소에 의해 필요 긴장력 도입시 최종적으로 고유 진동수가 미소하게 감소하는 것으로 나타났으며, 외부 후 긴장력과 고유 진동수 변화 양상에 대한 명확한 관계 정립을 위한 추가적인 연구가 필요한 것으로 나타났다. 또한, 외부 후 긴장에 의해 동적 처짐, 동적 휨 응력 및 중력 방향 가속도가 감소하는 것으로 나타났다. 한편, 외부 후 긴장에 의하여 중력 방향 가속도의 70% 수준인 횡 방향 가속도가 최대 20% 정도 증가하는 것으로 나타나 이에 대한 추가적인 연구가 필요한 것으로 판단된다.

장척레일 축력 비교 연구 (A comparison study for the Axial forte of Longer Rail)

  • 민경주;이성욱;박대희
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.516-528
    • /
    • 2009
  • Form the application of long rail system the non-ballast steel plate bridges, fatigue strength increase and rail noise reduction can be expected. This is mainly form the reduction of the rail impact at the rail joint locations which already made to behave together from welds. In the high speed rail, application of long rail system is essential because without long rail system, the required serviceability level can not be achieved. But even with this long rail systems, the thermal expansion from the girder can not be absorbed in the normal bearing systems, and these expansion cause between girder and rail. Also unexpected rail buckling and fracture through rail thermal tension may happen. It was found through numerical analysis and field measurement that these problems can be avoided by semi-fixed bearing system. In this study, the benefits of non-ballast plate bridge through long rail system, especially at the point of girder stability, girder stiffness increase and bearing maintenance will be reviewed.

  • PDF