• Title/Summary/Keyword: non-composite

Search Result 1,545, Processing Time 0.03 seconds

Hydro-mechanical analysis of non-uniform shrinkage development and its effects on steel-concrete composite slabs

  • Al-Deen, Safat
    • Steel and Composite Structures
    • /
    • v.26 no.3
    • /
    • pp.303-314
    • /
    • 2018
  • Drying shrinkage in concrete caused by drying and the associated decrease in moisture content is one of the most important factors influencing the long-term deflection of steel-concrete composite slabs. The presence of profiled steel decking at the bottom of the composite slab causes non-uniform drying from top and bottom of the slab resulting non-uniform drying shrinkage. In this paper, a hydro-mechanical analysis method is proposed to simulate the development of non-uniform shrinkage through the depth of the composite slab. It also demonstrates how this proposed analysis method can be used in conjunction with previously presented structural analysis model to calculate the effects of non-uniform shrinkage on the long-term deflection of the slab. The method uses concrete moisture diffusion model to simulate the non-uniform drying of composite slab. Then mechanical models are used to calculate resulting shrinkage strain from non-uniform drying and its effect on the long-term behaviour of the composite slabs. The performance of the proposed analysis method is validated against experimental data.

Evaluation of Tensile Properties of Carbon Fiber Reinforced Composite Laminates with Non-Woven Carbon Mat (부직포를 삽입한 탄소섬유강화 복합적층판의 인장특성 평가)

  • 정성균
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.4
    • /
    • pp.96-100
    • /
    • 1997
  • Tensile properties of carbon fiber reinforce composite laminates with non-woven carbon mat are evaluated in this paper. Composite laminates are made by inserting non-wovon carbon mat between layers, The specimens were cut and polished according to ASTM standard . Longitudinal and Transverse Young's modulus are obtained by tensile test. Young's moduli without non-woven carbon mat are compared with those with non-woven carbon mat. Longitudinal and Transverse tensile strength are also investigated. Experimental results show that the transverse Young's modulus of composite materials with non-woven carbon mat is about 10% higher than that of composite materials without non-woven carbon mat. Longitudinal tensile strength of composite materials with non-woven carbon mat is about 24% higher than that of composite materials without non-woven carbon mat. Transverse tensile strength and torughness also increase by inserting non-woven carbon mat between layers.

  • PDF

Examination of non-homogeneity and lamination scheme effects on deflections and stresses of laminated composite plates

  • Zerin, Zihni;Turan, Ferruh;Basoglu, Muhammed Fatih
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.603-616
    • /
    • 2016
  • In this study, a convenient formulation for the bending of laminated composite plates that hold non-homogeneous properties is examined. The constitutive equations of first order shear deformation plate theory are obtained using Hamilton Principle. The effect of non-homogeneity, lamination schemes and aspect ratio on the deflections and stresses is analysed. It is understood from the study that economical and optimum designs for laminated composite plates can be achieved by changing lamination scheme and by considering non-homogeneity response of composite plate.

Effect of non-woven tissues on interlaminar fracture toughness of composite laminate (부직포가 복합적층판의 층간파괴인성에 미치는 효과)

  • 김영배;정성균;강진식;김태형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.110-114
    • /
    • 2000
  • The Interlaminar fracture behavior of hybrid composite with non-woven carbon tissue was investigated under Mode I (DCB) and Mode II (ENF) loading condition. Hybrid composites were manufactured by means of inserting a non-woven tissue between prepreg layers. Two kinds of specimens were prepared from [0]$_{24}$ and [$0_{12}/0_{12}$]. Where, the symbol "/" means that a non-woven carbon tissue was located at 0/0 mid-plane of the specimen. The interlaminar fracture toughness of hybrid composites was compared with that of CFRP. The fracture surfaces of the specimens were observed using optical microscope and SEM, and the failure mechanism was discussed. The hybrid laminates, which are made by inserting non-woven carbon tissue between layers, were shown to be effective to remarkably improve Mode II fracture toughness.toughness.

  • PDF

Case Study of Non-Metallic Repair Systems for Metallic Piping

  • Hammad, Bakr. S.
    • Corrosion Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.6-12
    • /
    • 2008
  • Non-metallic composite overwrap repair methods utilize resin based fiber-reinforced composite materials, which have higher specific strength to weight ratio and stiffness, superior corrosion and fatigue resistance, and substantially reduced weight when compared to carbon steel. Non-metallic repair methods/systems can allow desired functional properties to be achieved at a respectable economic advantage. For example, non-metallic composite repair systems have at least a 50 year design stress of 20 ksi and approximately 25% of the short term tensile strength of fiberglass. For these systems, the contribution of the repaired steel to the load carrying capability need not be considered, as the strength of the repair itself is sufficient to carry the internal pressure. Worldwide experience in the Oil & Gas industry confirms the integrity, durability, inherent permanency, and cost-effectiveness of non-metallic composite repair or rehabilitation systems. A case study of a recent application of a composite repair system in Saudi Aramco resulted in savings of 37% for offshore subsea line and 75% for onshore above grade pipeline job. Maintaining a pipeline can be costly but it is very small in comparison to the cost of a failure. Pipeline proponents must balance maintenance costs with pipeline integrity. The purpose is not just to save money but also to attain a level of safety that is acceptable. This technology involves the use of an epoxy polymer resin based, fiber-reinforced composite sleeve system for rehabilitation and /or repair pipelines.

Crashworthiness Characteristic Analysis of Composite Non-step Bus (복합제 초 저상 굴절버스의 충돌 특성 해석)

  • Kim, Yu-Seok;Choi, Jung-Hoon;Cho, Jin-Rae;Lee, Sang-Jin
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.756-761
    • /
    • 2007
  • This papered is concerned with the crashworthiness characteristics analysis of the non-step bus when it is crashed or roll-over analysis. Computer simulations is implemented using LS-Dyna explicit code which can effectively analysis dynamic response with the lapse of time. We construct a FEM model of the non-step bus under development according to the safety rules used in Europe for composite non-step buses. The crash energy and absorption rate are evaluated to understand crashworthiness characteristic of the composite non-step bus. Body deformation is also examined whether the survival space is secured for passengers.

  • PDF

Analytical and Experimental Studies on Partially Composite of Steel-Plate Girder Bridges Using Slab Anchors (바닥판 앵커를 사용한 플레이트거더교의 부분합성에 관한 해석 및 실험 연구)

  • Han, Sang Yun;Park, Nam Hoi;Yoon, Ki Young;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.3 s.70
    • /
    • pp.325-332
    • /
    • 2004
  • Cross sections of steel-plate girder bridges are divided into three cross sections of non-composite, partially composite, and fully composite sections, according to their composite characteristics. The Korean provision for the partially and fully composite sections specifies general usage of the stud of shear connectors, whereas the one for the non-composite section specifies empirical usage of slab anchors. However, the actual behavior of the cross sections of steel-plate girder bridges using slab anchors is close not to the non-composite action, but to the partially composite action. Therefore analytical and experimental studies on partial composites of steel-plate girder bridges using slab anchors are performed in this study. Intial stiffness of the slab anchor is obtained by the experimental study for the first time, and the composite characteristic of simple-span and two-span continuous steel-plate girder bridges is investigated by the finite element analyses for the second time. Based on the obtained initial stiffness, the reduction effect of tensile stresses in the concrete-slab on the intermediate support of the continuous bridge is also considered herein.

Natural Dyeing Absorption Properties of Chitosan and Nano Silver Composite Non-Woven Fabrics -Focus on Chrysanthemum Indicum Linn- (키토산/나노실버 복합섬유 혼방 부직포의 천연염색 염착특성 -감국을 중심으로-)

  • Hong, Byung-Suk;Chu, Young-Ju;Lee, Eun-Jin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.5
    • /
    • pp.775-783
    • /
    • 2010
  • This study examines the dyeability, light fastness, washing fastness, and the antibacterial activity of chitosan and nano silver composite non-woven fabrics dyed with an extracted solution from Chrysanthemum Indicum Linn. The results show that an increase in the chitosan and nano silver percentage resulted in an increase in the $a^*$ values and $b^*$ values; however, the $L^*$ values decreased in the undyed condition. ${\Delta}E$ values of chitosan and nano silver composite non-woven fabrics were higher than cotton 100% non-woven fabrics in the dyed condition with an extracted solution from Chrysanthemum Indicum Linn, and mordant treatments influenced the chrominance change. In the dyed condition with an extracted solution from Chrysanthemum Indicum Linn, an increase in the percentage of chitosan and nano silver resulted in an increase of the K/S values. The dyeability of chitosan and nano silver composite non-woven fabrics increased by mordant treatments. The light fastness and washing fastness of the mordanted non-woven fabrics were better than the non-mordanted. For the antibacterial activity, the bacterial reduction rate of chitosan and nano silver composite non-woven fabrics was 99.9% to Staphylococcus aureus and Klebsiella pneumoniae.

Influence of Graphite Epoxy Composite Material on the Electrochemical Galvanic Corrosion of Metals (금속재료의 전기화학적 갈바닉 부식에 미치는 GECM의 영향)

  • Yoo, Y.R.;Son, Y.I.;Shim, G.T.;Kwon, Y.H.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.27-39
    • /
    • 2009
  • Non metallic composite materials, for example, GECM(graphite epoxy composite material) show high specific strength because of low density. These kinds of non metallic composite materials improved the structural effectiveness and operation economics. However, if these materials contacted several metals, corrosion can be arisen since non metallic composite materials have electrical conductivity. This paper dealt with galvanic corrosion between graphite epoxy composite material and several metals. Base on the electrochemical galvanic corrosion test between GECM and metals, corrosion current of carbon steel and aluminium increased with time but corrosion current of stainless steels and titanium decreased and galvanic potential increased. This behavior shows the galvanic corrosion depends upon the presence of passive film. Also, galvanic effect of GECM coupled with ferrous alloys and non-ferrous alloys was lower than that of 100% graphite, which is attributed to lower exposed area of graphite fiber in the GECM than apparent area of the GECM specimen used for the calculation of galvanic current in this work.

Non-Destructive Evaluation of $Al_2O_3/AC8A$ Composite by Ultrasonic Measurement (초음파법에 의한 $Al_2O_3/AC8A$ 복합재료의 특성평가)

  • 박영철;이규창;이준현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.816-825
    • /
    • 1994
  • The purpose of this study is to develop the non-destructive material evaluation method of aluminum alloy base metal matrix composite(MMC) by ultrasonics. Five aluminum base MMC specimens were fabricated in which the fractional ratios of fiber were changed from 0% to 31%. Relations among acoustic properties, microstructural features and elastic constant were compared. The ultrasonic velocity method was useful for nondestructive elastic constant measurement of composite materials, since the method had as same accuracy as conventional strain measurement method. Furthermore, velocity, attenuation and backscattering behaviors for each specimen also related to fractional ratio of fiber and these relations could utilize ultrasonic non-destructive evaluation of fiber structure in MMC.